Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Psychiatry ; 15: 1392158, 2024.
Article in English | MEDLINE | ID: mdl-38855641

ABSTRACT

Background: The current biomarker-supported diagnosis of Alzheimer's disease (AD) is hindered by invasiveness and cost issues. This study aimed to address these challenges by utilizing portable electroencephalography (EEG). We propose a novel, non-invasive, and cost-effective method for identifying AD, using a sample of patients with biomarker-verified AD, to facilitate early and accessible disease screening. Methods: This study included 35 patients with biomarker-verified AD, confirmed via cerebrospinal fluid sampling, and 35 age- and sex-balanced healthy volunteers (HVs). All participants underwent portable EEG recordings, focusing on 2-minute resting-state EEG epochs with closed eyes state. EEG recordings were transformed into scalogram images, which were analyzed using "vision Transformer(ViT)," a cutting-edge deep learning model, to differentiate patients from HVs. Results: The application of ViT to the scalogram images derived from portable EEG data demonstrated a significant capability to distinguish between patients with biomarker-verified AD and HVs. The method achieved an accuracy of 73%, with an area under the receiver operating characteristic curve of 0.80, indicating robust performance in identifying AD pathology using neurophysiological measures. Conclusions: Our findings highlight the potential of portable EEG combined with advanced deep learning techniques as a transformative tool for screening of biomarker-verified AD. This study not only contributes to the neurophysiological understanding of AD but also opens new avenues for the development of accessible and non-invasive diagnostic methods. The proposed approach paves the way for future clinical applications, offering a promising solution to the limitations of advanced diagnostic practices for dementia.

2.
Biochem Biophys Res Commun ; 721: 150025, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38768546

ABSTRACT

The causes of Alzheimer's disease (AD) are poorly understood, although many genes are known to be involved in this pathology. To gain insights into the underlying molecular mechanisms, it is essential to identify the relationships between individual AD genes. Previous work has shown that the splice variant E of KLC1 (KLC1_vE) promotes AD, and that the CELF1 gene, which encodes an RNA-binding protein involved in splicing regulation, is at a risk locus for AD. Here, we identified a functional link between CELF1 and KLC1 in AD pathogenesis. Transcriptomic data from human samples from different ethnic groups revealed that CELF1 mRNA levels are low in AD brains, and the splicing pattern of KLC1 is strongly correlated with CELF1 expression levels. Specifically, KLC1_vE is negatively correlated with CELF1. Depletion and overexpression experiments in cultured cells demonstrated that the CELF1 protein down-regulates KLC1_vE. In a cross-linking and immunoprecipitation sequencing (CLIP-seq) database, CELF1 directly binds to KLC1 RNA, following which it likely modulates terminal exon usage, hence KLC1_vE formation. These findings reveal a new pathogenic pathway where a risk allele of CELF1 is associated with reduced CELF1 expression, which up-regulates KLC1_vE to promote AD.


Subject(s)
Alternative Splicing , Alzheimer Disease , CELF1 Protein , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Brain/metabolism , CELF1 Protein/metabolism , CELF1 Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
3.
iScience ; 27(3): 109303, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444607

ABSTRACT

GGGGCC hexanucleotide repeat expansion in C9orf72 causes frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Expanded GGGGCC repeat RNA accumulates within RNA foci and is translated into toxic dipeptide repeat proteins; thus, efficient repeat RNA degradation may alleviate diseases. hnRNPA3, one of the repeat RNA-binding proteins, has been implicated in the destabilization of repeat RNA. Using APEX2-mediated proximity biotinylation, here, we demonstrate PABPC1, a cytoplasmic poly (A)-binding protein, interacts with hnRNPA3. Knockdown of PABPC1 increased the accumulation of repeat RNA and RNA foci to the same extent as the knockdown of hnRNPA3. Proximity ligation assays indicated PABPC1-hnRNPA3 and PABPC1-RNA exosomes, a complex that degrades repeat RNA, preferentially co-localized when repeat RNA was present. Our results suggest that PABPC1 functions as a mediator of polyadenylated GGGGCC repeat RNA degradation through interactions with hnRNPA3 and RNA exosome complex.

4.
J Biol Chem ; 300(3): 105703, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301895

ABSTRACT

Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Eukaryotic Initiation Factor-5 , Frontotemporal Lobar Degeneration , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , C9orf72 Protein/genetics , Dipeptides/genetics , DNA Repeat Expansion/genetics , Drosophila/genetics , Drosophila/metabolism , Eukaryotic Initiation Factor-5/genetics , Eukaryotic Initiation Factor-5/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/physiopathology , HeLa Cells , Humans , Disease Models, Animal
5.
Int Psychogeriatr ; 36(1): 64-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36714996

ABSTRACT

OBJECTIVES: We aimed to investigate the association between very late-onset schizophrenia-like psychosis (VLOSLP), a schizophrenia spectrum disorder with an onset of ≥60 years, and Alzheimer's disease (AD) using biomarkers. DESIGN: Retrospective cross-sectional study. SETTING: Neuropsychology clinic of Osaka University Hospital in Japan. PARTICIPANTS: Thirty-three participants were classified into three groups: eight AD biomarker-negative VLOSLP (VLOSLP-AD), nine AD biomarker-positive VLOSLP (VLOSLP+AD), and sixteen amnestic mild cognitive impairment due to AD without psychosis (aMCI-P+AD) participants. MEASUREMENTS: Phosphorylated tau levels in the cerebrospinal fluid and 18F-Florbetapir positron emission tomography results were used as AD biomarkers. Several scales (e.g. the Mini-Mental State Examination (MMSE), Wechsler Memory Scale-Revised (WMS-R) Logical Memory (LM) I and II, and Neuropsychiatric Inventory (NPI)-plus) were conducted to assess clinical characteristics. RESULTS: Those in both VLOSLP-AD and +AD groups scored higher than those in aMCI-P+AD in WMS-R LM I. On the other hand, VLOSLP+AD participants scored in between the other two groups in the WMS-R LM II, with only VLOSLP-AD participants scoring significantly higher than aMCI-P+AD participants. There were no significant differences in sex distribution and MMSE scores among the three groups or in the subtype of psychotic symptoms between VLOSLP-AD and +AD participants. Four VLOSLP-AD and five VLOSLP+AD participants harbored partition delusions. Delusion of theft was shown in two VLOSLP-AD patients and five VLOSLP+AD patients. CONCLUSION: Some VLOSLP patients had AD pathology. Clinical characteristics were different between AD biomarker-positive and AD biomarker-negative VLOSLP, which may be helpful for detecting AD pathology in VLOSLP patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Alzheimer Disease/psychology , Cross-Sectional Studies , Retrospective Studies , Psychotic Disorders/diagnosis , Psychotic Disorders/psychology , Cognitive Dysfunction/psychology , Biomarkers , Amyloid beta-Peptides/cerebrospinal fluid
7.
Acta Neuropathol Commun ; 11(1): 130, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563653

ABSTRACT

Right temporal variant frontotemporal dementia, also called right-predominant semantic dementia, often has an unclear position within the framework of the updated diagnostic criteria for behavioral variant frontotemporal dementia or primary progressive aphasia. Recent studies have suggested that this population may be clinically, neuropathologically, and genetically distinct from those with behavioral variant frontotemporal dementia or left-predominant typical semantic variant primary progressive aphasia. Here we describe a Japanese case of right temporal variant frontotemporal dementia with novel heterozygous MAPT mutation Adenine to Thymidine in intervening sequence (IVS) 9 at position -7 from 3' splicing site of intron 9/exon 10 boundary (MAPT IVS9-7A > T). Postmortem neuropathological analysis revealed a predominant accumulation of 4 repeat tau, especially in the temporal lobe, amygdala, and substantia nigra, but lacked astrocytic plaques or tufted astrocytes. Immunoelectron microscopy of the tau filaments extracted from the brain revealed a ribbon-like structure. Moreover, a cellular MAPT splicing assay confirmed that this novel variant promoted the inclusion of exon 10, resulting in the predominant production of 4 repeat tau. These data strongly suggest that the MAPT IVS9-7 A > T variant found in our case is a novel mutation that stimulates the inclusion of exon 10 through alternative splicing of MAPT transcript and causes predominant 4 repeat tauopathy which clinically presents as right temporal variant frontotemporal dementia.


Subject(s)
Aphasia, Primary Progressive , Frontotemporal Dementia , Pick Disease of the Brain , Tauopathies , Humans , Aphasia, Primary Progressive/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Introns/genetics , Mutation , Pick Disease of the Brain/pathology , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/pathology , Temporal Lobe/metabolism
8.
J Neurochem ; 166(2): 156-171, 2023 07.
Article in English | MEDLINE | ID: mdl-37277972

ABSTRACT

An hexanucleotide repeat expansion mutation in the non-coding region of C9orf72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis. This mutation is estimated to be the most frequent genetic cause of these currently incurable diseases. Since the mutation causes autosomal dominantly inherited diseases, disease cascade essentially starts from the expanded DNA repeats. However, molecular disease mechanism is inevitably complex because possible toxic entity for the disease is not just functional loss of translated C9ORF72 protein, if any, but potentially includes bidirectionally transcribed expanded repeat containing RNA and their unconventional repeat-associated non-AUG translation products in all possible reading frames. Although the field learned so much about the disease since the identification of the mutation in 2011, how the expanded repeat causes a particular type of fronto-temporal lobe dominant neurodegeneration and/or motor neuron degeneration is not yet clear. In this review, we summarize and discuss the current understandings of molecular mechanism of this repeat expansion mutation with focuses on the degradation and translation of the repeat containing RNA transcripts.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , Proteins/genetics , Proteins/metabolism , RNA/genetics , RNA/metabolism , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics
9.
JMA J ; 6(1): 9-15, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36793534

ABSTRACT

Neuropathological features of frontotemporal dementia and amyotrophic lateral sclerosis (ALS) due to C9orf72 GGGGCC hexanucleotide repeat expansion include early dipeptide repeats, repeat RNA foci, and subsequent TDP-43 pathologies. Since the discovery of the repeat expansion, extensive studies have elucidated the disease mechanism of how the repeat causes neurodegeneration. In this review, we summarize our current understanding of abnormal repeat RNA metabolism and repeat-associated non-AUG translation in C9orf72 frontotemporal lobar degeneration/ALS. For repeat RNA metabolism, we specifically focus on the role of hnRNPA3, the repeat RNA-binding protein, and the EXOSC10/RNA exosome complex, an intracellular RNA-degrading enzyme. In addition, the mechanism of repeat-associated non-AUG translation inhibition via TMPyP4, a repeat RNA-binding compound, is discussed.

10.
Psychogeriatrics ; 22(3): 353-359, 2022 May.
Article in English | MEDLINE | ID: mdl-35279914

ABSTRACT

BACKGROUND: Patients with diabetes are at a higher risk for cognitive decline. Thus, biomarkers that can provide early and simple detection of cognitive decline are required. Neurofilament light chain (NfL) is a cytoskeletal protein that constitutes neural axons. Plasma NfL levels are elevated when neurodegeneration occurs. Here, we investigated whether plasma NfL levels were associated with cognitive decline in patients with type 2 diabetes. METHOD: This study included 183 patients with type 2 diabetes who visited Osaka University Hospital. All participants were tested for cognitive function using the Mini-Mental State Examination (MMSE) and the Rivermead Behavioural Memory Test (RBMT). NfL levels were analysed in the plasma and the relationship between NfL and cognitive function was examined. RESULTS: Lower RBMT-standardized profile scores (SPS) or MMSE scores correlated with higher plasma NfL levels (one-way analysis of variance: MMSE, P = 0.0237; RBMT-SPS, P = 0.0001). Furthermore, plasma NfL levels (ß = -0.34, P = 0.0005) and age (ß = -0.19, P = 0.016) were significantly associated with the RBMT score after multivariable regression adjustment. CONCLUSIONS: Plasma NfL levels were correlated with mild cognitive decline which is detected by the RBMT but not the MMSE in patients with type 2 diabetes. This suggests that plasma NfL levels may provide a valuable clinical tool for identifying mild cognitive decline in patients with diabetes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Biomarkers , Cognition , Cognitive Dysfunction/psychology , Diabetes Mellitus, Type 2/complications , Humans , Mental Status and Dementia Tests
11.
J Biol Chem ; 297(4): 101120, 2021 10.
Article in English | MEDLINE | ID: mdl-34450161

ABSTRACT

GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.


Subject(s)
C9orf72 Protein/biosynthesis , DNA Repeat Expansion , Models, Biological , Peptide Chain Elongation, Translational/drug effects , Porphyrins/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , HeLa Cells , Humans , Polyribosomes/metabolism
12.
Sci Rep ; 10(1): 20350, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230211

ABSTRACT

Neurofilament light chain (NfL) is a novel biomarker of neurodegenerative diseases. It is detectable in the peripheral blood, allowing low-invasive assessment of early signs of neurodegeneration. The level of NfL gradually increases with age; however, what other factors affect it remains unclear. The present study examined the association between blood NfL level and renal function among healthy participants undergoing a health check (n = 43, serum NfL) and patients with diabetes mellitus (n = 188, plasma NfL). All participants were 60 years of age or older; none were diagnosed with dementia. In each group, levels of blood NfL and serum creatinine significantly correlated (coefficient r = 0.50, 0.56). These associations remained statistically significant even after adjustment for age, sex, and body mass index. These findings indicate that blood NfL level might be partially affected by renal function. We recommend measuring renal function for a more precise evaluation of neuroaxonal damage, in particular, among older adults.


Subject(s)
Diabetes Mellitus, Type 2/blood , Neurofilament Proteins/blood , Renal Insufficiency/blood , Aged , Aged, 80 and over , Biomarkers/blood , Body Mass Index , Creatinine/blood , Cross-Sectional Studies , Female , Glomerular Filtration Rate , Humans , Male , Middle Aged , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/diagnosis
13.
EMBO J ; 39(19): e102700, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32830871

ABSTRACT

Nucleotide repeat expansions in the C9orf72 gene cause frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeat RNA accumulates within RNA foci and is also translated into toxic dipeptide repeat proteins (DPR). The mechanism of repeat RNA accumulation, however, remains unclear. The RNA exosome complex is a multimeric ribonuclease involved in degradation of defective RNA. Here, we uncover the RNA exosome as a major degradation complex for pathogenic C9orf72-derived repeat RNA. Knockdown of EXOSC10, the catalytic subunit of the complex, enhanced repeat RNA and DPR protein expression levels. RNA degradation assays confirmed that EXOSC10 can degrade both sense and antisense repeats. Furthermore, EXOSC10 reduction increased RNA foci and repeat transcripts in patient-derived cells. Cells expressing toxic poly-GR or poly-PR proteins accumulate a subset of small nucleolar RNA precursors, which are physiological substrates of EXOSC10, as well as excessive repeat RNA, indicating that arginine-rich DPR proteins impair the intrinsic activity of EXOSC10. Collectively, arginine-rich DPR-mediated impairment of EXOSC10 and the RNA exosome complex compromises repeat RNA metabolism and may thus exacerbate C9orf72-FTLD/ALS pathologies in a vicious cycle.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Frontotemporal Lobar Degeneration/metabolism , RNA Stability , RNA/metabolism , Repetitive Sequences, Nucleic Acid , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Frontotemporal Lobar Degeneration/genetics , HeLa Cells , Humans , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...