Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochemistry ; 57(8): 1369-1379, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29293322

ABSTRACT

B-cell lymphoma 6 (BCL6) is the most frequently involved oncogene in diffuse large B-cell lymphomas (DLBCLs). BCL6 shows potent transcriptional repressor activity through interactions with its corepressors, such as BCL6 corepressor (BCOR). The inhibition of the protein-protein interaction (PPI) between BCL6 and its corepressors suppresses the growth of BCL6-dependent DLBCLs, thus making BCL6 an attractive drug target for lymphoma treatment. However, potent small-molecule PPI inhibitor identification remains challenging because of the lack of deep cavities at PPI interfaces. This article reports the discovery of a potent, cell-active small-molecule BCL6 inhibitor, BCL6-i (8), that operates through irreversible inhibition. First, we synthesized irreversible lead compound 4, which targets Cys53 in a cavity on the BCL6-BTB domain dimer by introducing an irreversible warhead to high-throughput screening hit compound 1. Further chemical optimization of 4 based on kinact/KI evaluation produced BCL6-i with a kinact/KI value of 1.9 × 104 M-1 s-1, corresponding to a 670-fold improvement in potency compared to that of 4. By exploiting the property of irreversible inhibition, engagement of BCL6-i to intracellular BCL6 was confirmed. BCL6-i showed intracellular PPI inhibitory activity between BCL6 and its corepressors, thus resulting in BCL6-dependent DLBCL cell growth inhibition. BCL6-i is a cell-active chemical probe with the most potent BCL6 inhibitory activity reported to date. The discovery process of BCL6-i illustrates the utility of irreversible inhibition for identifying potent chemical probes for intractable target proteins.


Subject(s)
Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/metabolism , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Cysteine/analysis , Cysteine/metabolism , Drug Discovery , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Models, Molecular , Protein Binding/drug effects , Proto-Oncogene Proteins c-bcl-6/chemistry , Small Molecule Libraries/chemistry
2.
SLAS Discov ; 22(9): 1168-1174, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28426937

ABSTRACT

In a high-throughput screening (HTS) process, the chemical reactivity of test samples should be carefully examined because such reactive compounds may lead to false-positive results and adverse effects in vivo. Among all natural amino acids, the thiol side chain in cysteine has the highest nucleophilicity; thus, assessment of intrinsic thiol group reactivity in the HTS processes is expected to accelerate drug discovery. In general, kchem (M-1s-1), the secondary reaction rate constant of a compound to thiol, can be evaluated via time course measurements of thiol-compound adducts using liquid chromatography-mass spectroscopy; this requires time-consuming and labor-intensive procedures. To overcome this issue, we developed a fluorescence-based competitive endpoint assay that allows quantitative calculation of the reaction rate of test compounds in an HTS format. Our assay is based on the competitive reaction for a free thiol (e.g., glutathione) between the test compounds and a fluorescent probe, o-maleimide BODIPY. Our assay provides robust data with a satisfactory throughput at an affordable cost. Our kchem evaluation method has advantages over previous assays in terms of higher throughput and quantitativeness. Thus, it contributes to early elimination of reactive compounds as well as quantitative evaluation of the kchem values of covalent inhibitors.

3.
J Med Chem ; 58(20): 8036-53, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26372373

ABSTRACT

To develop centromere-associated protein-E (CENP-E) inhibitors for use as anticancer therapeutics, we designed novel imidazo[1,2-a]pyridines, utilizing previously discovered 5-bromo derivative 1a. By site-directed mutagenesis analysis, we confirmed the ligand binding site. A docking model revealed the structurally important molecular features for effective interaction with CENP-E and could explain the superiority of the inhibitor (S)-isomer in CENP-E inhibition vs the (R)-isomer based on the ligand conformation in the L5 loop region. Additionally, electrostatic potential map (EPM) analysis was employed as a ligand-based approach to optimize functional groups on the imidazo[1,2-a]pyridine scaffold. These efforts led to the identification of the 5-methoxy imidazo[1,2-a]pyridine derivative (+)-(S)-12, which showed potent CENP-E inhibition (IC50: 3.6 nM), cellular phosphorylated histone H3 (p-HH3) elevation (EC50: 180 nM), and growth inhibition (GI50: 130 nM) in HeLa cells. Furthermore, (+)-(S)-12 demonstrated antitumor activity (T/C: 40%, at 75 mg/kg) in a human colorectal cancer Colo205 xenograft model in mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Animals , Binding Sites , Drug Design , HeLa Cells , Histones/metabolism , Humans , Ligands , Mice , Mitosis/drug effects , Models, Molecular , Mutagenesis, Site-Directed , Phosphorylation , Static Electricity , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...