Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2251, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783125

ABSTRACT

A polyethersulfone (PES)-supported graphene oxide (GO) membrane has been developed by a simple casting approach. This stable membrane is applied for ethanol/water separation at different temperatures. The 5.0 µm thick GO film coated on PES support membrane showed a long-term stability over a testing period of one month and excellent water/ethanol selectivity at elevated temperatures. The water/ethanol selectivity is dependent on ethanol weight percentage in water/ethanol feed mixtures and on operating temperature. The water/ethanol selectivity was enhanced with an increase of ethanol weight percentage in water/ethanol mixtures, from below 100 at RT to close to 874 at a 90 °C for 90% ethanol/10% water mixture. Molecular dynamics simulation of water-ethanol mixtures in graphene bilayers, that are considered to play a key role in transport, revealed that molecular transport is negligible for layer spacing below 1 nm. The differences in the diffusion of ethanol and water in the bilayer are not consistent with the large selectivity value experimentally observed. The entry of water and ethanol into the interlayer space may be the crucial step controlling the selectivity.

2.
Sci Rep ; 6: 29484, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27388562

ABSTRACT

Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.

3.
Nat Nanotechnol ; 11(9): 791-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27294505

ABSTRACT

Three water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour.

SELECTION OF CITATIONS
SEARCH DETAIL
...