Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci China Life Sci ; 66(8): 1800-1817, 2023 08.
Article in English | MEDLINE | ID: mdl-36949229

ABSTRACT

The discovery of biological activities of natural products plays a vital part in drug development. The mechanism by which organisms respond to temperature changes via biosynthesis of natural products remained largely cryptic. A thermophilic fungus under cold stress turned black and accumulated a polyketide metabolite 1 and lipid mass. Deficiency in 1 caused melanin loss and accumulated extra lipid mass, unexpectedly leading to seriously damaged mitochondria diagnostic for ferroptosis. Further analysis revealed that lipid mass induced by cold stress intensively increased ferroptosis risk and 1 functioned as cell wall reinforcer against mass lipid accumulation and as reactive oxygen species scavenger against lipid peroxidation. We also found that melanin in mice lowered lipid level but enhanced animal resistance to cold stress. Treatment with melanin precursors significantly increased mouse cell survival rate under cold stress. Our results unveiled a metabolite-lipid-ferroptosis-cold relationship, which provided mechanistic insights into the functions of most common metabolites and into diseases related to cold stress. These findings opened a perspective for developing anti-cold and anti-ferroptosis therapeutics and agents.


Subject(s)
Fungi , Melanins , Mice , Animals , Temperature , Reactive Oxygen Species/metabolism , Fungi/metabolism , Lipids
2.
Heliyon ; 9(2): e13066, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36747564

ABSTRACT

Tryptophan and its derived metabolites have been assumed to play important roles in the development and survival of organisms. However, the links of tryptophan and its derived metabolites to temperature change remained largely cryptic. Here we presented that a class of prenyl indole alkaloids biosynthesized from tryptophan dramatically accumulated in thermophilic fungus Thermomyces dupontii under cold stress, in which lipid droplets were also highly accumulated and whose conidiophores were highly build-up. Concurrently, disruption of the key NRPS gene involved in the biosynthesis of prenyl indole alkaloids, resulted in decreased lipid and shrunken mitochondria but enlarged vacuoles. Moreover, the Fe3+ and superoxide levels in ΔNRPS were significantly increased but the reactive oxygen species lipid peroxidation and autophagy levels decreased. Metabolomics study revealed that most enriched metabolites in ΔNRPS were mainly composed of tryptophan degraded metabolites including well known ROS scavenger kynurenamines, and lipid-inhibitors, anthranilic acid and indoleacetic acid, and free radical reaction suppressor free fatty acids. Transcriptomic analysis suggested that the key gene involved in tryptophan metabolism, coinciding with the lipid metabolic processes and ion transports were most up-regulated in ΔNRPS under stress. Our results confirmed a lipid-mediated fungal response to cold stress and unveiled a link of tryptophan-based metabolic reprogramming to the fungal cold adaption.

SELECTION OF CITATIONS
SEARCH DETAIL
...