Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(36): 42442-42450, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34473485

ABSTRACT

MXene quantum dots feature favorable biological compatibility and superior optical properties, offering great potential for biomedical applications such as reactive oxygen species (ROS) scavenging and fluorescence sensing. However, the ROS scavenging mechanism is still unclear and the MXene-based materials for ROS sensing are still scarce. Here, we report a nitrogen-doped titanium carbide quantum dot (N-Ti3C2 QD) antioxidant with effective ROS scavenging ability. The doped nitrogen atoms promote the electrochemical interaction between N-Ti3C2 QDs and free radicals and thus enhance their antioxidant performance. Density functional theory (DFT) simulations reveal the hydroxyl radical quenching process and confirm that the doped N element promotes the free-radical absorption ability, especially for -F and -O functional groups in N-Ti3C2 QDs. Furthermore, N-Ti3C2 QDs show rapid, accurate, and remarkable sensitivity to hydrogen peroxide in the range of 5 nM-5.5 µM with a limit of detection of 1.2 nM within 15 s, which is the lowest detection limit of the existing fluorescent probes up to now. Our results provide a new category of antioxidant materials, a real-time hydrogen peroxide sensing probe, promoting the research and development of MXene in bioscience and biotechnology.


Subject(s)
Fluorescent Dyes/chemistry , Free Radical Scavengers/chemistry , Hydrogen Peroxide/analysis , Quantum Dots/chemistry , Density Functional Theory , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Limit of Detection , Models, Chemical , Nitrogen/chemistry , Oxidation-Reduction , Spectrometry, Fluorescence , Titanium/chemistry
2.
Nanoscale ; 12(38): 19516-19535, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32966498

ABSTRACT

Graphene and graphene-like two-dimensional (2D) nanomaterials, such as black phosphorus (BP), transition metal carbides/carbonitrides (MXene) and transition metal dichalcogenides (TMD), have been extensively studied in recent years due to their unique physical and chemical properties. With atomic-scale thickness, these 2D materials and their derivatives can react with ROS and even scavenge ROS in the dark. With excellent biocompatibility and biosafety, they show great application potential in the antioxidant field and ROS detection for diagnosis. They can also generate ROS under light and be applied in antibacterial, photodynamic therapy (PDT), and other biomedical fields. Understanding the degradation mechanism of 2D nanomaterials by ROS generated under ambient conditions is crucial to developing air stable devices and expanding their application ranges. In this review, we summarize recent advances in 2D materials with a focus on the relationship between their intrinsic structure and the ROS scavenging or generating ability. We have also highlighted important guidelines for the design and synthesis of highly efficient ROS scavenging or generating 2D materials along with their biomedical applications.


Subject(s)
Graphite , Nanostructures , Transition Elements , Anti-Bacterial Agents , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...