Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Polymers (Basel) ; 15(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36987199

ABSTRACT

Traditional cushioning package materials, such as Expended Polystyrene (EPS) and Expanded Polyethylene (EPE), were made with petroleum-based plastics, which are harmful to the environment. It is crucial to develop renewable bio-based cushioning materials that can replace the aforementioned foams due to the rising energy demands of human society and the depletion of fossil fuels. Herein, we report an effective strategy for creating anisotropic elastic wood with special spring-like lamellar structures. Selective removal of lignin and hemicellulose by simple chemical treatment and thermal treatment of the samples after freeze-drying results in an elastic material with good mechanical properties. The resulting elastic wood has a reversible compression rate of 60% and a high elastic recovery (99% height retention after 100 cycles at 60% strain). Drop tests revealed that the elastic wood has excellent cushioning properties. In addition, the chemical and thermal treatments also enlarge the pores in the material, which is favorable for subsequent functionalization. By loading the elastic wood with a muti-walled carbon nanotube (MWCNT), electromagnetic shielding properties are achieved, while the mechanical properties of elastic wood remain unchanged. Electromagnetic shielding materials can effectively suppress various electromagnetic waves propagating through space and the resulting electromagnetic interference and electromagnetic radiation, improve the electromagnetic compatibility of electronic systems and electronic equipment, and ensure the safety of information.

2.
RSC Adv ; 10(19): 11188-11199, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35495319

ABSTRACT

A cost-efficient methodology was developed for a two-step removal of hemicellulose from lignocellulosic biomass, thereby yielding C5 sugars, further separated residue, and high purity cellulose as well as lignin. In the first step of the process, an oxalic acid (OA)-assisted hydrolysis pretreatment was conducted for the selective decomposition of hemicellulose to C5 sugars. The optimized process conditions were as follows: temperature: 160 °C, OA concentration: 1%, holding time: 10 min. Under these conditions, various monosaccharides and other intermediates were obtained and more than 98.32% of the hemicellulose was removed from the original poplar. In the second step of the process, to extract lignin, a low concentration of sulfuric acid was used as a catalyst during the treatment of samples in a γ-valerolactone/H2O system; more than 91.57% lignin was removed, 82.99% cellulose was retained in the solid cellulose-rich substrates, and 94.45% (i.e., high-purity) cellulose was obtained. This method can be used for efficient fractionation of hemicellulose, cellulose, and lignin with the aim of achieving high value utilization of the entire biomass.

3.
Bioresour Technol ; 152: 267-74, 2014.
Article in English | MEDLINE | ID: mdl-24300845

ABSTRACT

The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers.


Subject(s)
Biofuels/analysis , Oils/chemistry , Thermogravimetry/methods , Carbon/analysis , Chemical Phenomena , Differential Thermal Analysis , Kinetics , Oxidation-Reduction , Temperature , Volatilization , Wood/chemistry
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(4): 944-8, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22715758

ABSTRACT

The weight-loss character and gas evolution rule of larch wood at different heating rates were investigated by TG-FTIR (thermogravimetric analyzer coupled to a Fourier transform infrared spectrometer), and the results were compared with those of larch wood model-component mixture. The main weight-loss area of larch wood was wider than larch wood model-component mixture, and the residual char yield of larch wood (18.97%) was lower than larch wood model-component mixture (29.83%). During the pyrolysis process, the activation energy of larch wood model-component mixture was higher than the larch wood's in the low-temperature region, but there was little difference between the two segments in high temperature region. Larch wood came through several stages of water extraction, main component decomposition, charring during its pyrolysis process, and gas precipitation mainly happening at near 375 degrees C. The order of main gas products generated from the larch wood pyrolysis reaction was CO2 > H2O > CH4 > CO, and the gas product yield was significantly increased when the heating rate increased. The larch wood model-component mixture had the similar basic rules of producing gas to larch wood, but the former had relatively higher precipitation density than the latter.

SELECTION OF CITATIONS
SEARCH DETAIL