Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35631700

ABSTRACT

Alfalfa is the most important forage legume with symbiotic nitrogen-fixing nodule in roots, but it is sensitive to aluminum (Al), which limits its plantation in acidic soils. One rhizobia clone of Sinorhizobium meliloti with Al tolerance (AT1) was isolated from the nodule in AlCl3-treated alfalfa roots. AT1 showed a higher growth rate than the standard rhizobia strain Sm1021 under Al-stressed conditions. Alfalfa growth was improved by inoculation with AT1 under Al-stressed conditions, with increased length and fresh weight in shoots and roots. High nitrogenase activity and pink effective nodules were obtained in AT1-inoculated plant roots under Al stress, with increased total nitrogen compared with the non-inoculated control. The application of exogenous NH4+-nitrogen increased the Al resistance in alfalfa. It is suggested that rhizobia's increase of the Al resistance in alfalfa is associated with its improved nitrogen status. Inoculation with Al-tolerant rhizobia is worth testing in an acidic field for improved alfalfa productivity.

2.
Plant Cell ; 29(7): 1748-1772, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28684428

ABSTRACT

The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress.


Subject(s)
Cell Nucleus/metabolism , Lactoylglutathione Lyase/metabolism , Medicago/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Cell Membrane/metabolism , Cysteine/metabolism , Dehydration , Droughts , Gene Expression Regulation, Plant , Glutathione/metabolism , Lipid Metabolism , Lipids/chemistry , Lipoylation , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport , Transcription Factors/genetics
3.
PLoS One ; 11(3): e0150458, 2016.
Article in English | MEDLINE | ID: mdl-26934377

ABSTRACT

Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.


Subject(s)
Flowers/physiology , Gene Expression Regulation, Plant , Histones/metabolism , Oryza/physiology , Plant Proteins/metabolism , Amino Acid Sequence , Flowers/chemistry , Flowers/genetics , Histones/chemistry , Histones/genetics , Molecular Sequence Data , Oryza/chemistry , Oryza/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , RNA Interference , Sequence Alignment , Ubiquitination
4.
Plant Biotechnol J ; 14(3): 915-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26260843

ABSTRACT

Isoflavones and proanthocyanidins (PAs), which are flavonoid derivatives, possess many health benefits and play important roles in forage-based livestock production. However, the foliage of Medicago species accumulates limited levels of both isoflavones and PAs. In this study, biosynthesis of isoflavone and PA in Medicago truncatula was enhanced via synergy between soya bean isoflavone synthase (IFS1); two upstream enzymes, chalcone synthase (CHS) and chalcone isomerase (CHI); and the endogenous flavanone 3-hydroxylase (F3H). Constitutive expression of GmIFS1 alone resulted in ectopic accumulation of the isoflavone daidzein and large increases in the levels of the isoflavones formononetin, genistein and biochanin A in the leaves. Furthermore, coexpression of GmIFS1 with GmCHS7 and GmCHI1A generally increased the available flux to flavonoid biosynthesis and resulted in elevated isoflavone, flavone and PA contents. In addition, down-regulation of MtF3H combined with coexpression of GmIFS1, GmCHS7 and GmCHI1A led to the highest isoflavone levels (up to 2 µmol/g fresh weight in total). Taken together, our results demonstrate that multigene synergism is a powerful means to enhance the biosynthesis of particular flavonoids and can be more broadly applied to the metabolic engineering of forage species.


Subject(s)
Genes, Plant , Isoflavones/biosynthesis , Medicago truncatula/metabolism , Proanthocyanidins/biosynthesis , Biosynthetic Pathways/genetics , Blotting, Western , Chromatography, High Pressure Liquid , Genetic Vectors/metabolism , Isoflavones/chemistry , Medicago truncatula/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Proanthocyanidins/chemistry , Real-Time Polymerase Chain Reaction , Solubility , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...