Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inflammopharmacology ; 31(6): 2857-2883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950803

ABSTRACT

Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.


Subject(s)
Autoimmune Diseases , Biological Products , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy
2.
Metabolites ; 13(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36837759

ABSTRACT

Antioxidant small molecules can prevent or delay the oxidative damage caused by free radicals. Herein, a structure-based hybridization of two natural antioxidants (caffeic acid and melatonin) afforded a novel hybrid series of indole-based amide analogues which was synthesized with potential antioxidant properties. A multiple-step scheme of in vitro radical scavenging assays was carried out to evaluate the antioxidant activity of the synthesized compounds. The results of the DPPH assay demonstrated that the indole-based caffeic acid amides are more active free radical scavenging agents than their benzamide analogues. Compared to Trolox, a water-soluble analogue of vitamin E, compounds 3a, 3f, 3h, 3j, and 3m were found to have excellent DPPH radical scavenging activities with IC50 values of 95.81 ± 1.01, 136.8 ± 1.04, 86.77 ± 1.03, 50.98 ± 1.05, and 67.64 ± 1.02 µM. Three compounds out of five (3f, 3j, and 3m) showed a higher capacity to neutralize the radical cation ABTS•+ more than Trolox with IC50 values of 14.48 ± 0.68, 19.49 ± 0.54, and 14.92 ± 0.30 µM, respectively. Compound 3j presented the highest antioxidant activity with a FRAP value of 4774.37 ± 137.20 µM Trolox eq/mM sample. In a similar way to the FRAP assay, the best antioxidant activity against the peroxyl radicals was demonstrated by compound 3j (10,714.21 ± 817.76 µM Trolox eq/mM sample). Taken together, compound 3j was validated as a lead hybrid molecule that could be optimized to maximize its antioxidant potency for the treatment of oxidative stress-related diseases.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36290663

ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) inhibitors are reported to exhibit promising effects on several pathological processes associated with Parkinson's disease (PD). To explore its repositioning potential as an antiparkinsonian agent, we evaluated the effects of omarigliptin (OMG), a DPP-4 inhibitor recently approved as a hypoglycemic drug, on neurotoxin-induced toxicity, using PC12 cells as a cellular model of PD. The molecular mechanism(s) underlying its protective activity was also investigated. OMG alleviated oxidative toxicity and the production of reactive oxygen species induced by 6-hydroxydopamine (6-OHDA) or rotenone. It also partially attenuated the formation of DPPH radicals and lipid peroxidation, demonstrating the antioxidant properties of OMG. OMG upregulated Nrf2 and heme oxygenase-1 (HO-1). Notably, treatment with a selective HO-1 inhibitor and Nrf2 knockdown by siRNA abolished the beneficial effects of OMG, indicating that the activated Nrf2/HO-1 signaling was responsible for the protective activity. Moreover, OMG exhibited anti-inflammatory activity, blocking inflammatory molecules, such as nitric oxide (NO) and inducible NO synthase, through inhibition of IκBα phosphorylation and NF-κB activation in an Akt-dependent fashion. Finally, OMG decreased the levels of cleaved caspase-3 and Bax and increased the level of Bcl-2, indicating its anti-apoptotic properties. Collectively, these results demonstrate that OMG alleviates the neurotoxin-induced oxidative toxicity through Nrf2/HO-1-mediated antioxidant, NF-κB-mediated anti-inflammatory, and anti-apoptotic mechanisms in PC12 cells. Our findings elucidating multiple mechanisms of antiparkinsonian activity strongly support the therapeutic potential of OMG in the treatment of PD.

4.
Eur J Med Chem ; 242: 114692, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36029560

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that causes uncontrollable movements. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, and only trials to relieve symptoms have been evaluated. Recently, we reported the total synthesis of cudraisoflavone J and its chiral isomers [Lu et al., J. Nat. Prod. 2021, 84, 1359]. In this study, we designed and synthesized a series of novel cudraisoflavone J derivatives and evaluated their neuroprotective activities in neurotoxin-treated PC12 cells. Among these compounds, difluoro-substituted derivative (13m) and prenylated derivative (24) provided significant protection to PC12 cells against toxicity induced by 6-hydroxydopamine (6-OHDA) or rotenone. Both derivatives inhibited 6-OHDA- or rotenone-induced production of reactive oxygen species and partially attenuated lipid peroxidation in rat brain homogenates, indicating their antioxidant properties. They also increased the expression of the antioxidant enzyme, heme oxygenase (HO)-1, and enhanced the nuclear translocation of Nrf2, the transcription factor that regulates the expression of antioxidant proteins. The neuroprotective effects of 13m and 24 were eliminated by Zn(II)-protoporphyrin IX, an HO-1 inhibitor, demonstrating the critical role of HO-1 in their actions. Moreover, upregulation of HO-1 was abolished by nuclear factor erythroid 2-related factor (Nrf2) knockdown, verifying that Nrf2 is an upstream regulator of HO-1. Compounds 13m and 24 triggered phosphorylation of ERK1/2, JNK, and Akt. Most importantly, 13m- and 24-induced enhancement of Nrf2 translocation and HO-1 expression was reversed by U0126 (an ERK inhibitor), SP600125 (a JNK inhibitor), and LY294002 (an Akt inhibitor). Collectively, our results show that compounds 13m and 24 exert neuroprotective and antioxidant effects through the Nrf2/HO-1 pathway mediated by phosphorylation of ERK1/2, JNK, or Akt in PC12 cells. Based on our findings, both derivatives could serve as potential therapeutic candidates for the neuroprotective treatment of PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Rats , Antioxidants/pharmacology , Cytochrome P-450 CYP2B1/metabolism , Cytochrome P-450 CYP2B1/pharmacology , Heme Oxygenase-1/metabolism , Neuroprotective Agents/pharmacology , Neurotoxins/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Rotenone/pharmacology
5.
Biomedicines ; 10(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35203580

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder pathologically distinguished by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Muscle rigidity, tremor, and bradykinesia are all clinical motor hallmarks of PD. Several pathways have been implicated in PD etiology, including mitochondrial dysfunction, impaired protein clearance, and neuroinflammation, but how these factors interact remains incompletely understood. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, only trials to alleviate the related motor symptoms. To reduce or stop the clinical progression and mobility impairment, a disease-modifying approach that can directly target the etiology rather than offering symptomatic alleviation remains a major unmet clinical need in the management of PD. In this review, we briefly introduce current treatments and pathophysiology of PD. In addition, we address the novel innovative therapeutic targets for PD therapy, including α-synuclein, autophagy, neurodegeneration, neuroinflammation, and others. Several immunomodulatory approaches and stem cell research currently in clinical trials with PD patients are also discussed. Moreover, preclinical studies and clinical trials evaluating the efficacy of novel and repurposed therapeutic agents and their pragmatic applications with encouraging outcomes are summarized. Finally, molecular biomarkers under active investigation are presented as potentially valuable tools for early PD diagnosis.

6.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34679739

ABSTRACT

Monoamine oxidase B (MAO-B) metabolizes dopamine and plays an important role in oxidative stress by altering the redox state of neuronal and glial cells. MAO-B inhibitors are a promising therapeutical approach for Parkinson's disease (PD). Herein, 24 melatonin analogues (3a-x) were synthesized as novel MAO-B inhibitors with the potential to counteract oxidative stress in neuronal PC12 cells. Structure elucidation, characterization, and purity of the synthesized compounds were performed using 1H-NMR, 13C-NMR, HRMS, and HPLC. At 10 µM, 12 compounds showed >50% MAO-B inhibition. Among them, compounds 3n, 3r, and 3u-w showed >70% inhibition of MAO-B and IC50 values of 1.41, 0.91, 1.20, 0.66, and 2.41 µM, respectively. When compared with the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 3n, 3r, 3u, and 3v demonstrated better selectivity indices (SI > 71, 109, 83, and 151, respectively). Furthermore, compounds 3n and 3r exhibited safe neurotoxicity profiles in PC12 cells and reversed 6-OHDA- and rotenone-induced neuronal oxidative stress. Both compounds significantly up-regulated the expression of the anti-oxidant enzyme, heme oxygenase (HO)-1. Treatment with Zn(II)-protoporphyrin IX (ZnPP), a selective HO-1 inhibitor, abolished the neuroprotective effects of the tested compounds, suggesting a critical role of HO-1 up-regulation. Both compounds increased the nuclear translocation of Nrf2, which is a key regulator of the antioxidative response. Taken together, these data show that compounds 3n and 3r could be further exploited for their multi-targeted role in oxidative stress-related PD therapy.

7.
Antioxidants (Basel) ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34679775

ABSTRACT

Monoamine oxidase B (MAO-B) is responsible for dopamine metabolism and plays a key role in oxidative stress by changing the redox state of neuronal and glial cells. To date, no disease-modifying therapy for Parkinson's disease (PD) has been identified. However, MAO-B inhibitors have emerged as a viable therapeutic strategy for PD patients. Herein, a novel series of indole-based small molecules was synthesized as new MAO-B inhibitors with the potential to counteract the induced oxidative stress in PC12 cells. At a single dose concentration of 10 µM, 10 compounds out of 30 were able to inhibit MAO-B with more than 50%. Among them, compounds 7b, 8a, 8b, and 8e showed 84.1, 99.3, 99.4, and 89.6% inhibition over MAO-B and IC50 values of 0.33, 0.02, 0.03, and 0.45 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 7b, 8a, 8b and 8e showed remarkable selectivity indices (SI > 305, 3649, 3278, and 220, respectively). A further kinetic study displayed a competitive mode of action for 8a and 8b over MAO-B with Ki values of 10.34 and 6.63 nM. Molecular docking studies of the enzyme-inhibitor binding complexes in MAO-B revealed that free NH and substituted indole derivatives share a common favorable binding mode: H-bonding with a crucial water "anchor" and Tyr326. Whereas in MAO-A the compounds failed to form favorable interactions, which explained their high selectivity. In addition, compounds 7b, 8a, 8b, and 8e exhibited safe neurotoxicity profiles in PC12 cells and partially reversed 6-hydroxydopamine- and rotenone-induced cell death. Accordingly, we report compounds 7b, 8a, 8b, and 8e as novel promising leads that could be further exploited for their multi-targeted role in the development of a new oxidative stress-related PD therapy.

8.
Bioorg Chem ; 116: 105352, 2021 11.
Article in English | MEDLINE | ID: mdl-34562673

ABSTRACT

Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.


Subject(s)
Drug Discovery , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidopamine/antagonists & inhibitors , Oxidopamine/pharmacology , PC12 Cells , Rats , Structure-Activity Relationship
9.
Bioorg Chem ; 86: 557-568, 2019 05.
Article in English | MEDLINE | ID: mdl-30782574

ABSTRACT

In search of potent acetyl cholinesterase inhibitors with low hepatotoxicity for the treatment of Alzheimer's disease, introduction of a chloro substitution to tacrine and some of its analogs has proven to be beneficial in maintaining or potentiating the cholinesterase inhibitory activity. Furthermore, it was found to be able to reduce the hepatotoxicity of the synthesized compounds, which is the main target of the study. Accordingly, a series of new 4-(chlorophenyl)tetrahydroquinoline derivatives, was synthesized and characterized. The synthesized compounds were evaluated for their in vitro and in vivo anti-cholinesterase activity using tacrine as a reference standard. Furthermore, they were investigated for their hepatotoxicity compared to tacrine. The obtained biological results revealed that all synthesized compounds displayed equivalent or significantly higher anti-cholinesterase activity and lower hepatotoxicity in comparison to tacrine. In addition, in silico drug-likeness of the synthesized compounds were predicted and their practical logP were assessed indicating that all synthesized compounds can be considered as promising hits/leads. Furthermore, docking study of the compound showing the highest in vitro anticholinesterase activity was performed and its binding mode was compared to that of tacrine.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Tacrine/pharmacology , Alzheimer Disease/metabolism , Animals , Anura , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Halogenation , Humans , Liver/drug effects , Liver/metabolism , Male , Molecular Docking Simulation , Molecular Structure , Rats , Structure-Activity Relationship , Tacrine/chemical synthesis , Tacrine/chemistry
10.
Future Med Chem ; 10(24): 2791-2814, 2018 12.
Article in English | MEDLINE | ID: mdl-30539666

ABSTRACT

AIM: Some anticancer ß-carbolines exhibited dual inhibition of topo-I and KSP. METHODOLOGY/RESULTS: Novel ß-carbolines were synthesized and screened for their anticancer activity according to the NCI protocol. Five dose assays results indicated that compounds 9, 10, 12, 17 and 20 were potent and non selective anticancer agents; the sulfanyltriazole 12 was the most potent. Compounds 10, 12 and 20 showed dual topo-I and KSP inhibition with compound 12 being the most potent. Active compounds elicited Pre-G1 apoptosis and cell cycle arrest at G2/M phase of melanoma MDA-MB-435 cells. Docking results, in silico physicochemical and absorption, distribution, metabolism, excretion (ADME) properties were appropriate. CONCLUSION: Compounds 10, 12 and 20 are potent apoptosis-inducing multitarget anticancer agents that act via dual inhibition of topo-I and KSP-ATPase.


Subject(s)
Antineoplastic Agents/pharmacology , Carbolines/pharmacology , Drug Design , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carbolines/chemical synthesis , Carbolines/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
Future Med Chem ; 10(10): 1159-1175, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29787297

ABSTRACT

BACKGROUND: Medicinal interest has focused on ß-carbolines as anticancer agents. METHODOLOGY/RESULTS: Several ß-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. CONCLUSION: Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.


Subject(s)
Antineoplastic Agents/chemical synthesis , Carbolines/chemistry , Drug Design , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Carbolines/metabolism , Carbolines/pharmacology , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Half-Life , Humans , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Molecular Docking Simulation , Structure-Activity Relationship
12.
Curr Gene Ther ; 17(2): 154-169, 2017.
Article in English | MEDLINE | ID: mdl-28494740

ABSTRACT

The restless endeavors revealing the molecular pathways underlying many neurodegenerative diseases and brain tumors have paved the way for the introduction of the selective exogenous gene-based therapeutics. The implicated active biomolecules encompass mainly negatively-charged nucleic acids ranging from DNA, mRNA, non-coding RNAs (small-interfering RNA, siRNA, and microRNA, miRNA), to antisense oligonucleotides. They selectively interfere with the genes translational and/or transcriptional processes. Although many reviews previously addressed brain targeting, a thorough correlation between the molecular properties of these biomacromolecules, the nature of blood brain barrier (BBB) in the accompanying pathological condition, the intracellular targets, as well as the design of the delivery system which will transport the bioactive cargo to the target cells attempting efficient delivery to the active sites in the brain will be appraised. In this review, we will further discuss the tremendous advances in non-viral gene delivery nanosystems currently investigated (starting from self-assembled nanoplexes using cationic polymers or lipids and going through liposomes, aptamers, polymersomes, exosomes, dendrimers and nanoparticles). Unlike previous reviews on this topic, functionalization strategies of the nanocarriers promoting either surface receptor binding or intracellular targeting of the cranial cells will be highlighted, with special emphasis on tailoring smart nanomedicines according to the CNS disease condition. In addition, newly-developed evaluation approaches, cell culture models studying BBB permeability and manipulation of the barrier function of the brain via focused ultrasound will be addressed.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Gene Transfer Techniques , Nanomedicine/methods , Nanoparticles/administration & dosage , Nucleic Acids/administration & dosage , Animals , Brain/blood supply , Brain/metabolism , Genetic Therapy/methods , Humans , Nanoparticles/chemistry , Nucleic Acids/genetics , Nucleic Acids/pharmacokinetics
13.
Biomaterials ; 34(2): 562-70, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23083934

ABSTRACT

In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles.


Subject(s)
Polyamines/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , RNA, Small Interfering/administration & dosage , Silicon Dioxide/chemistry , Cross-Linking Reagents/chemistry , Disulfides/chemistry , HeLa Cells , Humans , Nanogels , Polyelectrolytes , RNA Interference , RNA, Small Interfering/genetics
14.
ACS Nano ; 6(8): 6693-705, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22835034

ABSTRACT

Multifunctional delivery systems of small interfering RNA (siRNA) are needed to overcome the intrinsic biological barriers toward efficient gene silencing in the cell cytoplasm. In this report, a smart multilayered assembly (SMA) was fabricated by a layer-by-layer method with polyionic materials. The SMA was designed to feature a siRNA-loaded core, a transiently core-stabilizing silica interlayer, an endosome-disrupting polycation interlayer, and a biocompatible poly(ethylene glycol) (PEG) shell with reductive environment-responsive detachability. The SMA was confirmed to be approximately 160 nm in size with narrow distribution and spherical morphology by DLS and TEM analyses. The PEG detachability of the SMA based on disulfide cleavage was also confirmed by the increase in both ζ-potential and size due to the exposure of the polycation interlayer and the compromised colloidal stability. The silica interlayer rendered the SMA highly tolerant to dissociation induced by anionic lipids, while after 24 h dialysis siRNA release from the SMA was clearly observed, presumably due to gradual dissolution of the silica interlayer based on the equilibrium shift to silicate ions. The entrapment ratio of siRNA delivered by the SMA within the endosome was significantly lower than that by nondisulfide control (NDC) without PEG detachability, suggesting the improved endosomal escape of SMA with the exposed, endosome-disrupting interlayer after PEG detachment. SMAs induced significantly higher gene silencing efficiency in various cultured cells, compared to NDC, without associated cytotoxicity. The systemic administration of SMAs for subcutaneous tumor-bearing mice achieved significant endogenous gene silencing in tumor tissue without hematological toxicity.


Subject(s)
Delayed-Action Preparations/chemistry , Endosomes/chemistry , Endosomes/physiology , Nanocapsules/chemistry , Neoplasms, Experimental/genetics , RNA, Small Interfering/genetics , Transfection/methods , Animals , Crystallization/methods , Delayed-Action Preparations/administration & dosage , Macromolecular Substances/chemistry , Materials Testing , Mice , Molecular Conformation , Nanocapsules/ultrastructure , Particle Size , Polyethylene Glycols/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Surface Properties
15.
Biomaterials ; 31(17): 4764-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20304483

ABSTRACT

Silica-coating of positively charged polyplexes was demonstrated through silicic acid condensation to improve the polyplexes for enhanced complex stability and transfection efficiency. Silicic acid was efficiently condensed by polycations to form a silica network in the polyplex through electrostatic interaction and hydrogen bonding. The silica-coated (SC) polyplexes had an anionic surface charge of -20 mV and were 10-20 nm larger in size compared to the non-silica-coated control (+33.4 mV, 106 nm). Silica-coating significantly improved the polyplex stability against both dissociations by counter polyanion exchange and aggregation by salt. The silica network was dissolved to form silicic acid by removing free silicic acid based on the equilibrium, SiO(2) + 2H(2)O right arrow over left arrow Si(OH)(4). Indeed, dialysis of the SC polyplex solution against excess silica-free buffer permitted plasmid DNA release from the silica-coated polyplex, indicating the reversible nature of the silica-layer. The SC polyplex achieved significantly higher transfection efficiency without serious cytotoxicity compared to the polyplex without silica-coating. Detailed examinations of transfection using SC polyplexes revealed that the enhanced transfection efficiency was because of facilitated endosomal escape, possibly due to the protonation of the silica in acidic endosomal compartments. These findings demonstrate the utility of the silica-coating technique for polyplex-mediated gene delivery.


Subject(s)
DNA/genetics , Plasmids/genetics , Polymers/chemistry , Silicon Dioxide/chemistry , Transfection/methods , Cell Line, Tumor , Cell Survival/drug effects , Electrophoresis, Agar Gel , Flow Cytometry , Humans , Microscopy, Confocal , Polymers/adverse effects , Polymers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...