Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22165, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053886

ABSTRACT

Background and objectives: Aluminum phosphide (AlP), known as "rice tablet," is widely used as an effective pesticide. However, AlP poisoning is a common cause of mortality in many countries, such as Iran. Unfortunately, there is no specific antidote for AlP toxicity to date. AlP releases phosphine gas when it is exposed to moisture or acid. Phosphine is a potent mitochondrial toxin that could significantly inhibit cellular energy metabolism. AlP poisoning is an emergency condition that needs instant and effective intervention. Dihydroxyacetone (DHA) is a simple saccharide used for several pharmacological as well as cosmetic purposes. Previously, we found that DHA could significantly prevent mitochondrial impairment induced by toxic agents such as cyanide and phosphine in various in vitro and in vivo experimental models. Methods: Hospitalized patients (n = 111) were evaluated for eligibility criteria. Among these patients, n = 35 cases were excluded due to incomplete data (n = 11) and suspicion of poisoning with poisons other than AlP (n = 24). Meanwhile, n = 76 cases with confirmed AlP poisoning were included in the study. AlP-poisoned patients who did not receive DHA (n = 18) were used as the control group.Patients (n = 58) received at least one dose of DHA (500 ml of 5 % DHA solution w/v, i.v.) as an adjuvant therapy in addition to the routine treatment of AlP poisoning. Arterial blood gas (ABG), blood pH, bicarbonate levels, and other vital signs and biochemical measurements were monitored. Moreover, the mortality rate and hospitalization time were evaluated in DHA-treated and AlP-poisoned patients without DHA administration. Several biomarkers were assessed before (upon hospitalization) and after DHA treatment. The routine tests for AlP-poisoned patients in this study were the measurement of electrolytes (K+ and Na+), WBC, RBC, hemoglobin, INR, carbonate (HCO3), blood pH, PaCO2, and PaO2 and SGPT, SGOT, BUN, Cr. Results: Upon patients' admission, significant decreases in blood pH (acidosis), blood PaO2, and HCO3 levels were the hallmarks of AlP poisoning. It was found that DHA significantly alleviated biomarkers of AlP poisoning and tremendously enhanced patients' survival rate (65.52 % in DHA-treated vs 33.34 % in the control group) compared to patients treated based on hospital routine AlP poisoning protocols (no DHA). No significant adverse effects were evident in DHA-treated patients in the current study. Interpretation and conclusions: These data suggest that parenteral DHA is a novel and effective antidote against AlP poisoning to be used as an adjuvant in addition to routine supportive treatment. Trial registration: IR.SUMS.REC.1394.102.

2.
Heliyon ; 9(4): e15324, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123944

ABSTRACT

Aluminum phosphide (AlP) is widely used for protecting grains from pests. AlP releases toxic phosphine gas (PH3) while exposed to humidity. Poisoning with these tablets is dangerous and can cause death or serious injuries. Up to now, no definite antidote has been introduced for specific treatment of this poisoning. Sevelamer carbonate or sevelamer hydrochloride (Renagel) is a polymeric pharmaceutical prescribed for treating hyperphosphatemia in patients with chronic kidney disease. Sevelamer can bind with phosphate groups and act as an anion exchanger. Herein, sevelamer is repurposed as a potent antidote agent in phosphine gas poisoning. In vivo evaluation was conducted on male Sprague Dawley rats. The evaluation was conducted on three groups of animals: control, AlP-poisoned, and AlP-poisoned treated with sevelamer. Survival percentage, serum biomarkers level of organ injury, and ATP level were recorded. The results indicate a high survival rate in sevelamer-treated animals compared with the AlP-poisoned group (75% vs. 0% respectively, 48 h after poisoning). The analysis of serum markers of organ injury also showed that sevelamer could reduce toxicity and organ injury in poisoned animals. ATP level of separate organs showed that sevelamer treated groups were recovered. The results showed that sevelamer could be a potent antidote for managing aluminum phosphide poisoning. Moreover, a mechanism is suggested for the interaction of sevelamer with phosphine gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...