Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 224(2): 238-49, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10926763

ABSTRACT

The Polycomb group genes are required for the correct expression of the homeotic complex genes and segment specification during Drosophila embryogenesis and larval development. In mouse, inactivation studies of several Polycomb group genes indicate that they are also involved in Hox gene regulation. We have used our previously generated M33 mutants to study the function of M33, the mouse homologue of the Polycomb gene of Drosophila. In this paper, we show that in the absence of M33, the window of Hoxd4 retinoic acid (RA) responsiveness is opened earlier and that Hoxd11 gene expression is activated earlier in development This indicates that M33 antagonizes the RA pathway and has a function in the establishment of the early temporal sequence of activation of Hox genes. Despite the early activation, A-P boundaries are correct in later stages, indicating a separate control mechanism for early aspects of Hox regulation. This raises a number of interesting issues with respect to the roles of both Pc-G proteins and Hox regulatory mechanisms. We propose that a function of the M33 protein is to control the accessibility of retinoic acid response elements in the vicinity of Hox genes regulatory regions by direct or indirect mechanisms or both. This could provide a means for preventing ectopic transactivation early in development and be part of the molecular basis for temporal colinearity of Hox gene expression.


Subject(s)
Gene Expression Regulation, Developmental/drug effects , Genes, Homeobox , Repressor Proteins/physiology , Tretinoin/pharmacology , Animals , Bone and Bones/abnormalities , Bone and Bones/embryology , Mice , Mice, Mutant Strains , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Repressor Proteins/genetics
2.
J Virol ; 66(1): 534-47, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1727498

ABSTRACT

We have studied the expression pattern of the vaccinia virus DNA polymerase during the viral replicative cycle. To monitor polymerase synthesis, a polyclonal antiserum was raised against a TrpE-DNA polymerase fusion protein. Immunoprecipitation and S1 analyses revealed that polymerase synthesis and mRNA levels peak by 2 to 3.5 h postinfection during wild-type infections and then decline, becoming barely detectable by 5 to 6.5 h postinfection. Blocking viral DNA replication by performing infections with temperature-sensitive DNA- mutants at the nonpermissive temperature or by performing wild-type infections in the presence of cytosine beta-D-arabinofuranoside had no effect on polymerase expression. These results indicate that the transient expression of the DNA polymerase is regulated independently of intermediate and late viral gene expression. Cycloheximide, which inhibits protein synthesis and prevents secondary uncoating, caused prolonged and elevated levels of polymerase transcription. Early viral proteins and uncoating, rather than exhaustion of the encapsidated transcription machinery, are presumed to mediate the cessation of polymerase transcription. In the presence of aphidicolin, the polymerase transcripts were maintained at maximal levels rather than exhibiting their normal decline. This inhibition of RNA decay was seen even in infections performed with isolates encoding aphidicolin-resistant DNA polymerases, suggesting that aphidicolin may interfere directly with the process of RNA degradation. Under these conditions, polymerase synthesis remained transient and was not prolonged, despite the continuing presence of available mRNA. These observations suggest that early mRNAs may experience a loss in translation efficiency as infection progresses.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/biosynthesis , Vaccinia virus/genetics , Animals , Antibody Specificity , Base Sequence , Cycloheximide/pharmacology , DNA, Viral , Gene Expression Regulation, Viral , L Cells , Mice , Molecular Sequence Data , Mutation , Promoter Regions, Genetic , Transcription, Genetic , Vaccinia virus/enzymology , Vaccinia virus/physiology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...