Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3024, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021137

ABSTRACT

Manipulating and separating single label-free cells without biomarker conjugation have attracted significant interest in the field of single-cell research, but digital circuitry control and multiplexed individual storage of single label-free cells remain a challenge. Herein, by analogy with the electrical circuitry elements and electronical holes, we develop a pseudo-diamagnetophoresis (PsD) mattertronic approach in the presence of biocompatible ferrofluids for programmable manipulation and local storage of single PsD holes and label-free cells. The PsD holes conduct along linear negative micro-magnetic patterns. Further, eclipse diode patterns similar to the electrical diode can implement directional and selective switching of different PsD holes and label-free cells based on the diode geometry. Different eclipse heights and junction gaps influence the switching efficiency of PsD holes for mattertronic circuitry manipulation and separation. Moreover, single PsD holes are stored at each potential well as in an electrical storage capacitor, preventing multiple occupancies of PsD holes in the array of individual compartments due to magnetic Coulomb-like interaction. This approach may enable the development of large programmable arrays of label-free matters with high throughput, efficiency, and reliability as multiplex cell research platforms.


Subject(s)
Biomedical Engineering/methods , Lab-On-A-Chip Devices , Magnetics/methods , Cell Survival , Electrons , Humans , Nanoparticles/chemistry , THP-1 Cells
2.
Lab Chip ; 16(18): 3485-92, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27456049

ABSTRACT

A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was formulated and validated by measuring the angles under controlled magnetic forces. Hence, the frictional forces on the streptavidin/Teflon interface between the colloids and the micromagnet arrays were obtained using the magnetic forces at the phase-locked angles. The friction coefficient for the streptavidin/Teflon interface was estimated to be approximately 0.036 regardless of both vertical force in the range of a few hundred pN and velocity in the range of a few tenths of µm s(-1).


Subject(s)
Friction , Magnetic Fields , Micro-Electrical-Mechanical Systems , Microtechnology/instrumentation , Nanotechnology/instrumentation , Colloids
SELECTION OF CITATIONS
SEARCH DETAIL
...