Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi Pharm J ; 32(1): 101911, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226346

ABSTRACT

In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.

2.
J Biomol Struct Dyn ; 41(1): 234-248, 2023 01.
Article in English | MEDLINE | ID: mdl-35068344

ABSTRACT

Protein case in kinase II alpha subunit (CK2) plays an imperative function in treating cancer disease. Herein, we have performed a three-dimensional quantitative structure activity relationship (3D-QSAR), and molecular docking analysis on a novel series of 2, 4, 5-trisubstituted imidazole derivatives in order to design potent kinase II alpha subunit (CK2) inhibitors. The 3D-QSAR methods such as comparative molecular similarity indexes analysis (COMSIA), and the comparative molecular field analysis (COMFA) were investigate using twenty-four molecules of 2, 4, 5-trisubstituted imidazole derivatives as anticancer agent. The best COMFA and COMSIA models exhibit excellent Q2 values of 0.66 and 0.75 and R2 values of 0.98 and 0.99 respectively. To check the validity of the selected COMFA and COMSIA models, a variety of validation tests were utilized: Internal validation analyses, and externally validation beside Y-randomization according to the principles of the Organization for Economic Co-operation and Development (OECD), and the Golbraikh and Tropsha's criteria for the validation of 3D-QSAR models. The proposed models for COMFA and COMSIA analysis have been successful. The developed models, indicating that they were reliable for activity prediction. Based on the preceding results, we designed several new potent molecules. Such outcome can proffer helpful theoretical references for future experimental studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Nitroimidazoles , Molecular Docking Simulation , Models, Molecular , Quantitative Structure-Activity Relationship , Imidazoles/pharmacology , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...