Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 777733, 2022.
Article in English | MEDLINE | ID: mdl-36275677

ABSTRACT

Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.


Subject(s)
Coinfection , HIV Infections , Interferon Type I , Latent Tuberculosis , Lentivirus Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca , C-Reactive Protein , Biomarkers , HIV Infections/complications , Adenosine Triphosphate
2.
Pathogens ; 11(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35631065

ABSTRACT

Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.

3.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34855621

ABSTRACT

Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.


Subject(s)
Anti-Retroviral Agents/pharmacology , Coinfection , Latent Tuberculosis/metabolism , Mycobacterium tuberculosis/metabolism , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus/metabolism , Animals , Coinfection/drug therapy , Coinfection/metabolism , Coinfection/microbiology , Coinfection/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/microbiology
5.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Article in English | MEDLINE | ID: mdl-33340034

ABSTRACT

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Subject(s)
COVID-19/veterinary , Callithrix/immunology , Lung/immunology , Macaca mulatta/immunology , Monkey Diseases/virology , Papio/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/pathology , Female , Humans , Immunity, Cellular/immunology , Immunoglobulin G/immunology , Inflammation/pathology , Lung/virology , Male , Monkey Diseases/immunology , Myeloid Cells/immunology , Viral Load , Virus Shedding
6.
Tuberculosis (Edinb) ; 116S: S42-S58, 2019 05.
Article in English | MEDLINE | ID: mdl-31126718

ABSTRACT

Vitamin D3 is known to be a key component in the defense against Mycobacterium tuberculosis (Mtb) infection through the regulation of cytokine and effector molecules. Conversely, alcohol exposure has been recognized as an immune dysregulator. Macrophages were extracted from D3 deficient and sufficient diet mice and supplemented with D3 or exposed to ethanol during ex vivo infection using M. bovis BCG, as a surrogate for Mtb. Results of our study indicate that while exogenous supplementation or alcohol exposure did alter immune response, in vivo diet was the greatest determinant of cytokine and effector molecule production. Alcohol exposure was found to profoundly dysregulate primary murine macrophages, with ethanol-exposed cells generally characterized as hyper- or hyporesponsive. Exogenous D3 supplementation had a normative effect for diet deficient host, however supplementation was not sufficient to compensate for the effects of diet deficiency. Vitamin D3 sufficient diet resulted in reduced cell cytotoxicity for the majority of time points. Results provide insight into the ramifications of both the individual and combined health risks of D3 deficiency or alcohol exposure. Given the clinical relevance of D3 deficiency and alcohol use comorbidities, outcomes of this study have implications in therapeutic approaches for the treatment of tuberculosis disease.


Subject(s)
Cholecalciferol/pharmacology , Dietary Supplements , Ethanol/toxicity , Macrophages/drug effects , Mycobacterium bovis/pathogenicity , Tuberculosis/microbiology , Vitamin D Deficiency/drug therapy , Animals , Bacterial Load , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Host-Pathogen Interactions , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Mycobacterium bovis/metabolism , Tuberculosis/immunology , Tuberculosis/metabolism , Vitamin D Deficiency/immunology , Vitamin D Deficiency/metabolism , Vitamin D Deficiency/microbiology
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2382-2385, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440886

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a highly infectious aerosolizable bacterium, which causes upward of 1.5 million deaths per year. Alveolar macrophages, the primary defense cell of the lung, are the preferred host cell of this intracellular bacterium. Vitamin D3 is a known transcription factor, modulating the transcription of pro- and anti-inflammatory cytokines and immunologically relevant proteins. In a vitamin D3 deficient host, the immune systems response to infection is greatly impaired. We used a quantitative systems biology approach to model the impact of long-term vitamin D3 deficiency on macrophage effector response. We then compared our simulation output to our in vitro model of mycobacterium infection of macrophages from vitamin D3 supplemented hosts. Our in silico model results agreed with in vitro levels of hydrogen peroxide (H2O2) production, an antimicrobial effector molecule produced by the host's macrophage, known to be modulated indirectly by vitamin D3. The current model will provide a foundation for further studies into the effects of micronutrient deficiency on immune response.


Subject(s)
Cholecalciferol/pharmacology , Macrophages/microbiology , Models, Theoretical , NADPH Oxidases/metabolism , Tuberculosis , Animals , Cell Line , Hydrogen Peroxide , Mice , Mycobacterium tuberculosis
8.
Innate Immun ; 23(6): 506-523, 2017 08.
Article in English | MEDLINE | ID: mdl-28770668

ABSTRACT

Mycobacterium tuberculosis ( Mtb), is a highly infectious airborne bacterium. Previous studies have found vitamin D3 to be a key factor in the defense against Mtb infection, through its regulation of the production of immune-related cytokines, chemokines and effector molecules. Mycobacterium smegmatis was used in our study as a surrogate of Mtb. We hypothesized that the continuous presence of vitamin D3, as well as the level of severity of infection would differentially modulate host cell immune response in comparison with control and the vehicle, ethanol. We found that vitamin D3 conditioning promotes increased bacterial clearance during low-level infection, intracellular containment during high-level infection, and minimizes host cytotoxicity. In the presence of vitamin D3 host cell production of cytokines and effector molecules was infection-level dependent, most notably IL-12, which increased during high-level infection and decreased during low-level infection, and NO, which had a rate of change positively correlated to IL-12. Our study provides evidence that vitamin D3 modulation is context-dependent and time-variant, as well as highly correlated to level of infection. This study furthers our mechanistic understanding of the dual role of vitamin D3 as a regulator of bactericidal molecules and protective agent against host cell damage.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholecalciferol/pharmacology , Macrophages/immunology , Mycobacterium smegmatis/physiology , Mycobacterium tuberculosis/physiology , Tuberculosis/drug therapy , Animals , Apoptosis , Autophagy , Bacterial Load , Cell Line , Interleukin-12/metabolism , Macrophages/drug effects , Macrophages/microbiology , Mice , Nitric Oxide/metabolism , Signal Transduction , Tuberculosis/immunology
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1443-1446, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268597

ABSTRACT

Mycobacterium tuberculosis is a global health concern, causing over one million deaths a year. Alveolar macrophages, as the primary host cell of this intracellular bacterium, play an important role in the course of disease. Vitamin D3 is known to have a potent effect on macrophage behavior during infection, modulating the production of pro- and anti-inflammatory cytokines and immune effector molecules. In a vitamin D3 deficient host, the immune systems response to infection is greatly impaired. We used a quantitative systems biology approach to model the intracellular effects of vitamin D3 and compared our simulation output to our in vitro model of mycobacterium infection of macrophages in the presence and absence of Vitamin D3. Our in silico model results agreed with the in vitro assay results of interleukin-10, an anti-inflammatory protein whose production is known to be influenced by vitamin D3. This model will provide a platform for further investigation of the effects of vitamin D3 deficiency on host immune response to infection.


Subject(s)
Macrophages , Cholecalciferol , Cytokines , Humans , Interleukin-10 , Mycobacterium tuberculosis
10.
Inorg Chem ; 50(17): 7910-2, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21797245

ABSTRACT

An aqueous synthetic procedure for preparing nanoparticles of the novel potassium bismuth ferrocyanide coordination polymer KBi(H(2)O)(2)[Fe(CN)(6)]·H(2)O is reported. The crystal structure of this coordination polymer is determined through X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, and potential use of such nanoparticles coated with PVP as a CT contrast agent are investigated.


Subject(s)
Contrast Media/chemical synthesis , Nanoparticles/chemistry , Tomography, X-Ray Computed , Bismuth/chemistry , Bismuth/pharmacology , Cell Survival/drug effects , Contrast Media/chemistry , Dose-Response Relationship, Drug , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , HeLa Cells , Humans , Models, Molecular , Particle Size , Polyvinyls/chemistry , Potassium/chemistry , Powder Diffraction , Pyrrolidines/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...