Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 154: 108538, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37549554

ABSTRACT

Fast bacterial detection and identification is a crucial challenge in order to improve our antibiotics use and reduce the antimicrobial resistance. Electroanalysis of biological fluids is cheap and can be done in situ but the electrode material needs to be perfectly chosen. We previously studied electrochemical signature of Pseudomonas aeruginosa's secretome, thanks to glassy carbon electrode. Some conductive polymers are particularly efficient for biological use because of their antifouling properties, biocompatibility and way of processing. In this paper, we described the fabrication, characterization and utilisation of PEDOT:PSS film to detect and identify Pseudomonas aeruginosa through three of its secreted molecules: pyocyanin, Pseudomonas quinolone PQS and 2'-aminoacetophenone. The electrochemical responses, clearly amplified by PEDOT:PSS, can be used to identify these bacteria quickly and efficiently.


Subject(s)
Polymers , Pseudomonas aeruginosa , Polymers/chemistry , Electrodes , Oxidation-Reduction , Bacteria
2.
Biosensors (Basel) ; 12(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35884254

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is widely accepted as an effective and non-destructive method to assess cell health during cell-culture. However, there is a lack of compact devices compatible with microfluidic integration and microscopy that could provide the real-time and non-invasive monitoring of cell-cultures using EIS. In this paper, we reported the design and characterization of a modular EIS testing system based on a patented technology. This device was fabricated using easily processable methodologies including screen-printing of the impedance electrodes and molding or micromachining of the cell culture chamber with an easy assembly procedure. Accordingly, to obtain processable, biocompatible and sterilizable electrode materials that lower the impact of interfacial impedance on TEER (Transepithelial electrical resistance) measurements, and to enable concomitant microscopy observations, we optimized the formulation of the electrode inks and the design of the EIS electrodes, respectively. First, electrode materials were based on carbon biocompatible inks enriched with IrOx particles to obtain low interfacial impedance electrodes approaching the performances of classical non-biocompatible Ag/AgCl second-species electrodes. Secondly, we proposed three original electrode designs, which were compared to classical disk electrodes that were optically compatible with microscopy. We assessed the impact of the electrode design on the response of the impedance sensor using COMSOL Multiphysics. Finally, the performance of the impedance spectroscopy devices was assessed in vitro using human airway epithelial cell cultures.


Subject(s)
Dielectric Spectroscopy , Microfluidics , Cell Culture Techniques , Electric Impedance , Electrodes , Humans
3.
Talanta ; 229: 122275, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838777

ABSTRACT

There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.


Subject(s)
Biosensing Techniques , Microfluidics , Cell Culture Techniques , Hydrogen Peroxide , Lactic Acid , Nitrites
4.
Bioelectrochemistry ; 140: 107747, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33618190

ABSTRACT

During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.


Subject(s)
Pseudomonas aeruginosa/metabolism , Electrochemical Techniques , Humans , Oxidation-Reduction , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/growth & development , Pyocyanine/analysis , Pyocyanine/metabolism , Quinolones/analysis , Quinolones/metabolism
5.
Anal Chem ; 89(19): 10124-10128, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28895397

ABSTRACT

Nucleic acid amplification testing is a very powerful method to perform efficient and early diagnostics. However, the integration of a DNA amplification reaction with its associated detection in a low-cost, portable, and autonomous device remains challenging. Addressing this challenge, the use of screen-printed electrochemical sensor is reported. To achieve the detection of the DNA amplification reaction, a real-time monitoring of the hydronium ions concentration, a byproduct of this reaction, is performed. Such measurements are done by potentiometry using polyaniline (PAni)-based working electrodes and silver/silver chloride reference electrodes. The developed potentiometric sensor is shown to enable the real-time monitoring of a loop-mediated isothermal amplification (LAMP) reaction with an initial number of DNA strands as low as 10 copies. In addition, the performance of this PAni-based sensor is compared to fluorescence measurements, and it is shown that similar results are obtained for both methods.


Subject(s)
Aniline Compounds/chemistry , DNA/analysis , Nucleic Acid Amplification Techniques/methods , Electrochemical Techniques , Electrodes , Hydrogen-Ion Concentration , Microfluidics
6.
Int J Nanomedicine ; 10: 2939-50, 2015.
Article in English | MEDLINE | ID: mdl-25931820

ABSTRACT

In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 µA cm(-2) mM(-1) up to 10 mM of glucose and a low detection limit of 10 µM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future.


Subject(s)
Biosensing Techniques/instrumentation , Glucose , Gold/chemistry , Nanostructures/chemistry , Oxides/chemistry , Tungsten/chemistry , Electrodes , Glucose/analysis , Glucose/chemistry , Limit of Detection , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...