Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1192659, 2024.
Article in English | MEDLINE | ID: mdl-38957387

ABSTRACT

Introduction: Emergence of drug resistant strains of Plasmodium species has necessitated the search for novel antimalarials with unique mechanisms of action. Synthesis of hybrid compounds has been one approach to tackling this challenge. In this study, the synthesis of artesunate-ellagic acid hybrid compound (EA31) from ellagic acid and artesunate and its evaluation for antimalarial and antioxidant activities using in vitro and in vivo models were carried out. Method: EA31 was synthesized from artesunate and ellagic acid. The activities of the hybrid compound against Plasmodium falciparum W2 and P. berghei NK65 were evaluated, and its antioxidant activities were also determined. Results: The results revealed that EA31 was more active against P. falciparum W2 (chloroquine resistant) clone and less cytotoxic to buffalo green monkey kidney cell line compared to artesunate. EA31 was also active against Plasmodium berghei NK65 in vivo. The results revealed inhibition of ß-hematin formation as one of the mechanisms of action of EA31. EA31 also exhibited antioxidant activities. Conclusion: The results revealed that EA31 may exert dual action of killing malaria parasite and mopping the reactive oxygen species that mediate the secondary complications of malaria.

2.
Arch Insect Biochem Physiol ; 105(1): e21723, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32623787

ABSTRACT

Insect cuticle lipids are involved in various types of chemical communication between species, and reduce the penetration of insecticides, chemicals, and toxins, as well as provide protection against the attack of microorganisms, parasitic insects, and predators. Ecological studies related to the insect Rhynchophorus palmarum are well-known; however, very little is known about its resistance mechanisms, which includes its lipid composition and its importance, specifically the cuticle layer. This study aimed to characterize the cuticle and internal lipid compounds of the male and female R. palmarum adult insects and to evaluate the presence of antimicrobial activity. We performed by gas chromatography coupled to mass spectrometry (GC-MS) analyzes of lipid extracts fractions and we identified 10 methyl esters of fatty acids esters of C14 to C23, with variation between the sexes of C22:0, C21:0, present only in male cuticle, and C20:2 in female. The lipid content of this insect showed relevant amount of C16:1, C18:1, and C18:2. The antimicrobial activity of the cuticular and internal fractions obtained was tested, which resulted in minimum inhibitory concentrations between 12.5 and 20 µg/ml against Gram-positive bacteria (Staphylococcus epidermidis, Enterococcus faecalis), Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia), and fungal species (Candida albicans e Candida tropicalis). The antimicrobial effect of the R. palmarum cuticle open perspectives for a new source to bioinsecticidal strategies, in addition to elucidating a bioactive mixture against bacteria and fungi.


Subject(s)
Anti-Infective Agents/pharmacology , Candida/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lipids/pharmacology , Weevils/chemistry , Animals , Anti-Infective Agents/chemistry , Esters/chemistry , Fatty Acids/chemistry , Lipids/chemistry
3.
PLoS One ; 15(4): e0231689, 2020.
Article in English | MEDLINE | ID: mdl-32298345

ABSTRACT

The giant sugarcane borer Telchin licus (Drury, 1773) (Lepidoptera: Castniidae) is a day-flying moth pest of sugarcane, pineapples and bananas. To better understand the chemical communication in this species, we examined the morphology of its olfactory system and the chemical composition of its body parts. The ventral surface of the clubbed antennae of T. licus has six morphological types of sensilla: sensilla trichodea, basiconica, chaetica, squamiforma, coeloconica, and auricillica. The telescopic ovipositor shows no evidence of a sexual gland, or female-specific compounds. On the other hand, the midleg basitarsus of males releases (E,Z)-2,13-octadecadienol and (Z,E)-2,13-octadecadienol, which are electroantennographically active in both sexes. These compounds are known female sex pheromones in the Sesiidae family and are male-specific compounds in another castniid moth, although further investigations are necessary to elucidate their ecological role in the Castniidae family.


Subject(s)
Moths/anatomy & histology , Moths/physiology , Animals , Arthropod Antennae/anatomy & histology , Arthropod Antennae/chemistry , Arthropod Antennae/physiology , Arthropod Antennae/ultrastructure , Female , Male , Moths/chemistry , Moths/ultrastructure , Oviposition , Saccharum/parasitology , Sex Attractants/analysis , Sex Attractants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...