Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(14): 2745-2761, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30737312

ABSTRACT

The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress and alcohol, and glutamate transmission within BNST is implicated in the neurobiology of alcoholism. The present study provides evidence that a history of excessive alcohol drinking increases signaling through the metabotropic glutamate receptor 5 (mGlu5) receptor within the BNST in an adaptive response to limit alcohol consumption. In particular, disruption of mGlu5 phosphorylation by extracellular signal-regulated kinase within this brain region induces excessive alcohol-drinking, which reflects a selective insensitivity to the aversive properties of alcohol intoxication. These data indicate that a specific signaling state of mGlu5 within BNST plays a central and unanticipated role in excessive alcohol consumption.


Subject(s)
Alcohol Drinking/metabolism , Alcohol Drinking/psychology , Receptor, Metabotropic Glutamate 5/metabolism , Septal Nuclei/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phosphorylation/physiology
2.
Addict Biol ; 20(1): 148-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24118426

ABSTRACT

Withdrawal from a history of extended access to self-administered cocaine produces a time-dependent intensification of drug seeking, which might relate to a cocaine-induced imbalance in the relative expression of constitutively expressed Homer1 versus Homer2 isoforms within the ventromedial aspect of the prefrontal cortex (vmPFC). Thus, we employed immunoblotting to examine the relation between cue-reinforced lever pressing at 3- versus 30-day withdrawal from a 10-day history of extended access (6 hours/day) to intravenous cocaine (0.25 mg/infusion) or saline (Sal6h), and the expression of Homer1b/c and Homer2a/b within the vmPFC versus the more dorsomedial aspect of this structure (dmPFC). Behavioral studies employed adeno-associated virus (AAV) vectors to reverse cocaine-elicited changes in the relative expression of Homer1 versus Homer2 isoforms and tested animals for cocaine prime-, and cue-induced responding following extinction training. Cocaine self-administration elevated both Homer1b/c and Homer2a/b levels within the vmPFC at 3-day withdrawal, and the rise in Homer2a/b persisted for at least 30 days. dmPFC Homer levels did not change as a function of self-administration history. Reversing the relative increase in Homer2 versus Homer1 expression via Homer1c overexpression or Homer2b knockdown failed to influence cue-reinforced lever pressing when animals were tested in a drug-free state, but both AAV treatments prevented cocaine-primed reinstatement of lever-pressing behavior. These data suggest that a cocaine-elicited imbalance in the relative expression of constitutively expressed Homer2 versus Homer1 within the vmPFC is necessary for the capacity of cocaine to reinstate drug-seeking behavior, posing drug-induced changes in vmPFC Homer expression as a molecular trigger contributing to drug-elicited relapse.


Subject(s)
Carrier Proteins/drug effects , Cocaine-Related Disorders/metabolism , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Drug-Seeking Behavior/drug effects , Prefrontal Cortex/drug effects , Animals , Carrier Proteins/metabolism , Drug-Seeking Behavior/physiology , Homer Scaffolding Proteins , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Recurrence
3.
Front Psychiatry ; 4: 39, 2013.
Article in English | MEDLINE | ID: mdl-23761764

ABSTRACT

Pain alters opioid reinforcement, presumably via neuroadaptations within ascending pain pathways interacting with the limbic system. Nerve injury increases expression of glutamate receptors and their associated Homer scaffolding proteins throughout the pain processing pathway. Homer proteins, and their associated glutamate receptors, regulate behavioral sensitivity to various addictive drugs. Thus, we investigated a potential role for Homers in the interactions between pain and drug reward in mice. Chronic constriction injury (CCI) of the sciatic nerve elevated Homer1b/c and/or Homer2a/b expression within all mesolimbic structures examined and for the most part, the Homer increases coincided with elevated mGluR5, GluN2A/B, and the activational state of various down-stream kinases. Behaviorally, CCI mice showed pain hypersensitivity and a conditioned place-aversion (CPA) at a low heroin dose that supported conditioned place-preference (CPP) in naïve controls. Null mutations of Homer1a, Homer1, and Homer2, as well as transgenic disruption of mGluR5-Homer interactions, either attenuated or completely blocked low-dose heroin CPP, and none of the CCI mutant strains exhibited heroin-induced CPA. However, heroin CPP did not depend upon full Homer1c expression within the nucleus accumbens (NAC), as CPP occurred in controls infused locally with small hairpin RNA-Homer1c, although intra-NAC and/or intrathecal cDNA-Homer1c, -Homer1a, and -Homer2b infusions (to best mimic CCI's effects) were sufficient to blunt heroin CPP in uninjured mice. However, arguing against a simple role for CCI-induced increases in either spinal or NAC Homer expression for heroin CPA, cDNA infusion of our various cDNA constructs either did not affect (intrathecal) or attenuated (NAC) heroin CPA. Together, these data implicate increases in glutamate receptor/Homer/kinase activity within limbic structures, perhaps outside the NAC, as possibly critical for switching the incentive motivational properties of heroin following nerve injury, which has relevance for opioid psychopharmacology in individuals suffering from neuropathic pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...