Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Vaccine ; 42(19): 4066-4071, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38789369

ABSTRACT

BACKGROUND: Carriage studies are an efficient means for assessing pneumococcal conjugate vaccine effect in settings where pneumococcal disease surveillance programmes are not well established. In this study the effect of 10-valent pneumococcal conjugate vaccine (PCV10) introduction on pneumococcal carriage and density among Nepalese children using a bacterial microarray and qPCR was examined. METHODS: PCV10 was introduced into the Nepalese infant immunisation schedule in August 2015. Nasopharyngeal swabs were collected from healthy Nepalese children in Kathmandu between April 2014 and December 2021. Samples were plated on blood agar, incubated overnight, and DNA extracted from plate sweeps. Pneumococcal serotyping was done using the Senti-SPv1.5 microarray (BUGS Bioscience, UK). DNA was extracted from swab media and qPCR performed for pneumococcal autolysin (lytA). RESULTS: A significant decline in prevalence of PCV10 serotypes was observed when comparing pre-PCV10 with post-PCV10 collection periods (36.5 %, 454/1244 vs 10.3 %, 243/2353, p < 0.0001). Multiple-serotype carriage was also observed to significantly decline when comparing pre-PCV10 with post-PCV10 periods (31.4 %, 390/1244 vs 22.2 %, 522/2353, p < 0.0001). Additionally, a significant decline in median pneumococcal density was observed when comparing pre-PCV10 with post-PCV10 periods (3.3 vs 3.25 log10 GE/ml, p = 0.0196). CONCLUSIONS: PCV10 introduction was associated with reduced, prevalence of all PCV10 serotypes, multiple serotype carriage, and pneumococcal carriage density.


Subject(s)
Carrier State , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Nepal/epidemiology , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Carrier State/epidemiology , Carrier State/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Infant , Male , Female , Child, Preschool , Serotyping , Prevalence , Nasopharynx/microbiology
2.
Int J Infect Dis ; 134: 248-255, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37451394

ABSTRACT

OBJECTIVES: We examined the association of nasopharyngeal (NP) pneumococcal co-colonization (>1 pneumococcal serotype) and pneumococcal density in young Peruvian children enrolled in a prospective cohort study. METHODS: NP swabs collected monthly from children aged <3 years during both asymptomatic and acute respiratory illness (ARI) periods underwent culture-enriched microarray for pneumococcal detection and serotyping and lytA polymerase chain reaction for density assessment. We examined the serotypes commonly associated with co-colonization and the distribution of densities by co-colonization, age, current ARI, and other covariates. The association of co-colonization and pneumococcal density was assessed using a multivariable mixed-effects linear regression model, accounting for repeated measures and relevant covariates. RESULTS: A total of 27 children contributed 575 monthly NP samples. Pneumococcus was detected in 302 of 575 (53%) samples, and co-colonization was detected in 61 of these 302 (20%). The total densities were higher during ARI than non-ARI periods and lowest among the youngest children, increasing with age. In the multivariable analysis, there was no significant association between pneumococcal density and co-colonization (coefficient estimate 0.22, 95% confidence interval 0.11-0.55; reference: single-serotype detections). Serotypes 23B and 19F were detected significantly more frequently as single isolates. CONCLUSION: Pneumococcal co-colonization was common and not associated with increased pneumococcal density. Differential propensity for co-colonization was observed among individual serotypes.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Child , Infant , Serogroup , Pneumococcal Infections/epidemiology , Prospective Studies , Peru/epidemiology , Nasopharynx , Pneumococcal Vaccines , Carrier State/epidemiology
3.
J Infect Dis ; 227(5): 610-621, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36130327

ABSTRACT

BACKGROUND: Monitoring changes in pharyngeal carriage of pneumococcus in children following 13-valent pneumococcal conjugate vaccine (PCV13) introduction in the United Kingdom in 2010 informs understanding of patterns of invasive pneumococcal disease (IPD) incidence. METHODS: Nasopharyngeal swabs from healthy children vaccinated with PCV13 according to schedule (2, 4, and 12 months) were cultured and serotyped. Results for children aged 13-48 months were compared between 2014-2015 and 2017-2019 and with children aged 6-12 months (2017-2020). Blood was obtained from a subset of children for pneumococcal serotype-specific immunoglobulin G (IgG). RESULTS: Total pneumococcal carriage at 13-48 months was 47.9% (473/988) in 2014-2015 and 51.8% (412/795) in 2017-2019 (P = .10); at age 6-12 months this value was 44.6% (274/615). In 2017-2019, 2.9% (95% confidence interval, 1.8%-4.3%) of children aged 13-48 months carried PCV13 serotypes (mainly 3 [1.5%] and 19A [0.8%]) and >20% carried the additional 20-valent PCV (PCV20) serotypes. Similar proportions of children had IgG ≥0.35 IU/mL for each serotype in 2014-2015 and 2017-2019. Serotype 7C carriage increased significantly (P < .01) between 2014-2015 and 2017-2019. Carriage of PCV20 serotypes 8 and 12F, both major causes of IPD, was rare. CONCLUSIONS: Introduction of PCV20, if licensed for children, could significantly change the composition of pneumococcal serotypes carried in the pharynx of UK children. CLINICAL TRIALS REGISTRATION: NCT03102840.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Child , Infant , Serogroup , Vaccines, Conjugate , Carrier State/epidemiology , Pneumococcal Vaccines , Pneumococcal Infections/prevention & control , Nasopharynx , England/epidemiology , Immunoglobulin G
4.
Sci Rep ; 11(1): 18279, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521967

ABSTRACT

Previous studies have suggested that the pneumococcal niche changes from the nasopharynx to the oral cavity with age. We use an Experimental Human Pneumococcal Challenge model to investigate pneumococcal colonisation in different anatomical niches with age. Healthy adults (n = 112) were intranasally inoculated with Streptococcus pneumoniae serotype 6B (Spn6B) and were categorised as young 18-55 years (n = 57) or older > 55 years (n = 55). Colonisation status (frequency and density) was determined by multiplex qPCR targeting the lytA and cpsA-6A/B genes in both raw and culture-enriched nasal wash and oropharyngeal swab samples collected at 2-, 7- and 14-days post-exposure. For older adults, raw and culture-enriched saliva samples were also assessed. 64% of NW samples and 54% of OPS samples were positive for Spn6B in young adults, compared to 35% of NW samples, 24% of OPS samples and 6% of saliva samples in older adults. Many colonisation events were only detected in culture-enriched samples. Experimental colonisation was detected in 72% of young adults by NW and 63% by OPS. In older adults, this was 51% by NW, 36% by OPS and 9% by saliva. The nose, as assessed by nasal wash, is the best niche for detection of experimental pneumococcal colonisation in both young and older adults.


Subject(s)
Nasal Lavage Fluid/microbiology , Nose/microbiology , Pneumococcal Infections/diagnosis , Streptococcus pneumoniae , Adolescent , Adult , Age Factors , Aged , DNA, Bacterial/genetics , Female , Humans , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Pneumococcal Infections/microbiology , Saliva/microbiology , Streptococcus pneumoniae/genetics , Young Adult
5.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: mdl-33087431

ABSTRACT

Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for evaluating and formulating pneumococcal vaccines and for informing vaccine policy. For this reason, we evaluated the concordance between pneumococcal serotyping results by latex agglutination, whole-genome sequencing (WGS) with PneumoCaT, and DNA microarray for samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected according to WHO recommendations between 2015 and 2017 by using stratified random sampling among study populations. Participants included healthy children 3 to 6 years old (vaccinated with the 13-valent pneumococcal conjugate vaccine [PCV13] as part of the Expanded Program on Immunization [EPI]), healthy children 5 to 10 years old (age-ineligible for PCV13), and HIV-infected adults (18 to 40 years old) on antiretroviral therapy (ART). For phenotypic serotyping, we used a 13-valent latex kit (Statens Serum Institut [SSI], Denmark). For genomic serotyping, we applied the PneumoCaT pipeline to whole-genome sequence libraries. For molecular serotyping by microarray, we used the BUGS Bioscience Senti-SP microarray. A total of 1,347 samples were analyzed. Concordance was 90.7% (95% confidence interval [CI], 89.0 to 92.2%) between latex agglutination and PneumoCaT, 95.2% (95% CI, 93.9 to 96.3%) between latex agglutination and the microarray, and 96.6% (95% CI, 95.5 to 97.5%) between the microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococci carried at low relative abundances (median, 8%), the microarray increased VT detection by 31.5% over that by latex serotyping. To conclude, all three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine serotypes and requires the least expertise and resources for field implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories for investigating the importance of vaccine serotypes at low relative abundances in transmission and disease.


Subject(s)
Latex Fixation Tests , Pneumococcal Infections , Adolescent , Adult , Carrier State/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malawi/epidemiology , Nasopharynx , Oligonucleotide Array Sequence Analysis , Pneumococcal Vaccines , Prevalence , Serotyping , Young Adult
6.
mSphere ; 5(4)2020 07 29.
Article in English | MEDLINE | ID: mdl-32727860

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) carriage is commonly used to measure effects of pneumococcal vaccines. Based on findings from culture-based studies, the World Health Organization recommends both nasopharyngeal (NP) and oropharyngeal (OP) sampling for detecting adult carriage. Given evidence of potential confounding by other streptococci, we evaluated molecular methods for pneumococcal identification and serotyping from 250 OP samples collected from adults in Fiji, using paired NP samples for comparison. Samples were screened using lytA quantitative PCR (qPCR), as well as pneumococcal identification and serotyping conducted by DNA microarray. A subset of OP samples were characterized by latex sweep agglutination and multiplex PCR. Alternate qPCR assays (piaB and bguR) for pneumococcal identification were evaluated. The lytA qPCR was less specific and had poor positive predictive value (PPV) in OP samples (88% and 26%, respectively) compared with NP samples (95% and 64%, respectively). Using additional targets piaB and/or bguR improved qPCR specificity in OP, although the PPV (42 to 53%) was still poor. Using microarray, we found that 102/107 (95%) of OP samples contained nonpneumococcal streptococci with partial or divergent complements of pneumococcal capsule genes. We explored 91 colonies isolated from 11 OP samples using various techniques, including multiplex PCR, latex agglutination, and microarray. We found that nonpneumococcal streptococci contribute to false positives in pneumococcal serotyping and may also contribute to spurious identification by qPCR. Our results highlight that molecular approaches should include multiple loci to minimize false-positive results when testing OP samples. Regardless of method, pneumococcal identification and serotyping results from OP samples should be interpreted with caution.IMPORTANCEStreptococcus pneumoniae (the pneumococcus) is a significant global pathogen. Accurate identification and serotyping are vital. In contrast with World Health Organization recommendations based on culture methods, we demonstrate that pneumococcal identification and serotyping with molecular methods are affected by sample type. Results from oropharyngeal samples from adults were often inaccurate. This is particularly important for assessment of vaccine impact using carriage studies, particularly in low- and middle-income countries where there are significant barriers for disease surveillance.


Subject(s)
Carrier State/diagnosis , Carrier State/microbiology , Oropharynx/microbiology , Pneumococcal Infections/diagnosis , Streptococcus pneumoniae/isolation & purification , Adult , False Positive Reactions , Female , Humans , Male , Microarray Analysis , Molecular Diagnostic Techniques , Pneumococcal Infections/microbiology , Predictive Value of Tests , Real-Time Polymerase Chain Reaction , Serotyping , Specimen Handling , Streptococcus pneumoniae/classification
7.
mBio ; 11(2)2020 03 31.
Article in English | MEDLINE | ID: mdl-32234814

ABSTRACT

The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated ΔadcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the ΔadcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated ΔadcAII strains. However, transformation of ΔadcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated ΔadcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of ΔadcAII Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the ΔadcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and ΔadcAII, further investigation of which could further characterize mechanisms of capsule regulation.


Subject(s)
Alleles , Bacterial Proteins/genetics , Carrier Proteins/genetics , DNA Restriction-Modification Enzymes/genetics , Gene Deletion , Lipoproteins/genetics , Streptococcus pneumoniae/physiology , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Complement System Proteins/immunology , DNA Restriction-Modification Enzymes/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics/methods , Lipoproteins/metabolism , Mutation , Phagocytosis , Transcriptome , Virulence
8.
J Infect Dis ; 221(8): 1361-1370, 2020 03 28.
Article in English | MEDLINE | ID: mdl-31004136

ABSTRACT

BACKGROUND: Following programmatic introduction of the 13-valent pneumococcal conjugate vaccine (PCV13), there is residual carriage and disease due to PCV13-covered serotypes. METHODS: PCV13-immunized children aged 13-48 months, N = 988, were enrolled between February 2014 and August 2015 ("late PCV13"), and had nasopharyngeal pneumococcal carriage compared with 7-valent pneumococcal conjugate vaccine (PCV7) immunized children, N = 567, enrolled between November 2010 and September 2011 ("early PCV13"). Nasopharyngeal pneumococci were molecular-serotyped by microarray. Invasive pneumococcal disease (IPD) cases were identified through enhanced national surveillance. RESULTS: Compared with PCV7-immunized children, carriage among PCV13-immunized children was significantly lower for serotypes 19A (odds ratio [OR], 0.08 [95% confidence interval {CI}, .02-.25]), 6C (OR, 0.11 [95% CI, .03-.32]), and 7F (8 vs 0 cases). IPD incidence in children <5 years was significantly lower for serotypes 1 (incidence rate ratio [IRR], 0.03 [95% CI, 0-.19]) and 7F (IRR, 0.13 [95% CI, .05-.36]) but not 19A (IRR, 0.6 [95% CI, .3-1.12]) or serotype 3 (IRR, 2.3 [95% CI, .86-6.15]) in the late PCV13 period than in the early PCV13 period. The most significant rises in IPD incidence were for serotypes 8, 12F, and 24F. CONCLUSIONS: PCV13 has reduced serotype 19A carriage among vaccinated children. We found no impact of PCV13 on serotype 3 carriage or disease, and emergence of non-PCV13-serotype disease.


Subject(s)
Pneumococcal Vaccines/immunology , Vaccines, Conjugate/immunology , Carrier State/immunology , Carrier State/microbiology , Child, Preschool , Cross-Sectional Studies , Female , Heptavalent Pneumococcal Conjugate Vaccine/immunology , Humans , Immunization/methods , Incidence , Infant , Male , Nasopharynx/immunology , Nasopharynx/microbiology , Pneumococcal Infections/immunology , Serogroup , Streptococcus pneumoniae/immunology , United Kingdom , Vaccination/methods
9.
Clin Infect Dis ; 70(8): 1580-1588, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31175819

ABSTRACT

BACKGROUND: Cambodia introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in January 2015 using a 3 + 0 dosing schedule and no catch-up campaign. We investigated the effects of this introduction on pneumococcal colonization and invasive disease in children aged <5 years. METHODS: There were 6 colonization surveys done between January 2014 and January 2018 in children attending the outpatient department of a nongovernmental pediatric hospital in Siem Reap. Nasopharyngeal swabs were analyzed by phenotypic and genotypic methods to detect pneumococcal serotypes and antimicrobial resistance. Invasive pneumococcal disease (IPD) data for January 2012-December 2018 were retrieved from hospital databases. Pre-PCV IPD data and pre-/post-PCV colonization data were modelled to estimate vaccine effectiveness (VE). RESULTS: Comparing 2014 with 2016-2018, and using adjusted prevalence ratios, VE estimates for colonization were 16.6% (95% confidence interval [CI] 10.6-21.8) for all pneumococci and 39.2% (95% CI 26.7-46.1) for vaccine serotype (VT) pneumococci. There was a 26.0% (95% CI 17.7-33.0) decrease in multidrug-resistant pneumococcal colonization. The IPD incidence was estimated to have declined by 26.4% (95% CI 14.4-35.8) by 2018, with a decrease of 36.3% (95% CI 23.8-46.9) for VT IPD and an increase of 101.4% (95% CI 62.0-145.4) for non-VT IPD. CONCLUSIONS: Following PCV13 introduction into the Cambodian immunization schedule, there have been declines in VT pneumococcal colonization and disease in children aged <5 years. Modelling of dominant serotype colonization data produced plausible VE estimates.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Asian People , Cambodia/epidemiology , Child , Child, Preschool , Heptavalent Pneumococcal Conjugate Vaccine , Humans , Infant , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Serogroup , Vaccines, Conjugate
10.
J Infect Dis ; 219(12): 1989-1993, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30690468

ABSTRACT

Pneumococcal colonization is rarely studied in adults, except as part of family surveys. We report the outcomes of colonization screening in healthy adults (all were nonsmokers without major comorbidities or contact with children aged <5 years) who had volunteered to take part in clinical research. Using nasal wash culture, we detected colonization in 6.5% of volunteers (52 of 795). Serotype 3 was the commonest serotype (10 of 52 isolates). The majority of the remaining serotypes (35 of 52 isolates) were nonvaccine serotypes, but we also identified persistent circulation of serotypes 19A and 19F. Resistance to at least 1 of 6 antibiotics tested was found in 8 of 52 isolates.


Subject(s)
Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/immunology , Adult , Anti-Bacterial Agents/immunology , Drug Resistance, Bacterial/immunology , Female , Healthy Volunteers , Humans , Male , Serogroup , United Kingdom , Young Adult
11.
Vaccine ; 37(2): 296-305, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30502068

ABSTRACT

Pneumococcal carriage is a prerequisite for disease, and underpins herd protection provided by pneumococcal conjugate vaccines (PCVs). There are few data on the impact of PCVs in lower income settings, particularly in Asia. In 2013, the Lao People's Democratic Republic (Lao PDR) introduced 13-valent PCV (PCV13) as a 3 + 0 schedule (doses at 6, 10 and 14 weeks of age) with limited catch-up vaccination. We conducted two cross-sectional carriage surveys (pre- and two years post-PCV) to assess the impact of PCV13 on nasopharyngeal pneumococcal carriage in 5-8 week old infants (n = 1000) and 12-23 month old children (n = 1010). Pneumococci were detected by quantitative real-time PCR, and molecular serotyping was performed using DNA microarray. Post PCV13, there was a 23% relative reduction in PCV13-type carriage in children aged 12-23 months (adjusted prevalence ratio [aPR] 0.77 [0.61-0.96]), and no significant change in non-PCV13 serotype carriage (aPR 1.11 [0.89-1.38]). In infants too young to be vaccinated, there was no significant change in carriage of PCV13 serotypes (aPR 0.74 [0.43-1.27]) or non-PCV13 serotypes (aPR 1.29 [0.85-1.96]), although trends were suggestive of indirect effects. Over 70% of pneumococcal-positive samples contained at least one antimicrobial resistance gene, which were more common in PCV13 serotypes (p < 0.001). In 12-23 month old children, pneumococcal density of both PCV13 serotypes and non-PCV13 serotypes was higher in PCV13-vaccinated compared with undervaccinated children (p = 0.004 and p < 0.001, respectively). This study provides evidence of PCV13 impact on carriage in a population without prior PCV7 utilisation, and provides important data from a lower-middle income setting in Asia. The reductions in PCV13 serotype carriage in vaccine-eligible children are likely to result in reductions in pneumococcal transmission and disease in Lao PDR.


Subject(s)
Carrier State/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/isolation & purification , Carrier State/immunology , Cross-Sectional Studies , Female , Humans , Immunity, Herd , Infant , Laos/epidemiology , Male , Nasopharynx/microbiology , Pneumococcal Infections/prevention & control , Polymerase Chain Reaction , Prevalence , Serogroup , Serotyping , Vaccination , Vaccines, Conjugate/administration & dosage
12.
Lancet Glob Health ; 6(12): e1375-e1385, 2018 12.
Article in English | MEDLINE | ID: mdl-30420033

ABSTRACT

BACKGROUND: The indirect effects of pneumococcal conjugate vaccines (PCVs) are mediated through reductions in carriage of vaccine serotypes. Data on PCVs in Asia and the Pacific are scarce. Fiji introduced the ten-valent PCV (PCV10) in 2012, with a schedule consisting of three priming doses at 6, 10, and 14 weeks of age and no booster dose (3 + 0 schedule) without catch-up. We investigated the effects of PCV10 introduction using cross-sectional nasopharyngeal carriage surveys. METHODS: We did four annual carriage surveys (one pre-PCV10 and three post-PCV10) in the greater Suva area in Fiji, during 2012-15, of 5-8-week-old infants, 12-23-month-old children, 2-6-year-old children, and their caregivers (total of 8109 participants). Eligible participants were of appropriate age, had axillary temperature lower than 37°C, and had lived in the community for at least 3 consecutive months. We used purposive quota sampling to ensure a proper representation of the Fiji population. Pneumococci were detected by real-time quantitative PCR, and molecular serotyping was done with microarray. FINDINGS: 3 years after PCV10 introduction, vaccine-serotype carriage prevalence declined, with adjusted prevalences (2015 vs 2012) of 0·56 (95% CI 0·34-0·93) in 5-8-week-old infants, 0·34 (0·23-0·49) in 12-23-month-olds, 0·47 (0·34-0·66) in 2-6-year-olds, and 0·43 (0·13-1·42) in caregivers. Reductions in PCV10 serotype carriage were evident in both main ethnic groups in Fiji; however, carriage of non-PCV10 serotypes increased in Indigenous Fijian infants and children. Density of PCV10 serotypes and non-PCV10 serotypes was lower in PCV10-vaccinated children aged 12-23 months than in PCV10-unvaccinated children of the same age group (PCV10 serotypes -0·56 [95% CI -0·98 to -0·15], p=0·0077; non-PCV10 serotypes -0·29 [-0·57 to -0·02], p=0·0334). INTERPRETATION: Direct and indirect effects on pneumococcal carriage post-PCV10 are likely to result in reductions in pneumococcal disease, including in infants too young to be vaccinated. Serotype replacement in carriage in Fijian children, particularly Indigenous children, warrants further monitoring. Observed changes in pneumococcal density might be temporal rather than vaccine related. FUNDING: Department of Foreign Affairs and Trade of the Australian Government through the Fiji Health Sector Support Program; Victorian Government's Operational Infrastructure Support Program; Bill & Melinda Gates Foundation.


Subject(s)
Carrier State/prevention & control , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/genetics , Caregivers/statistics & numerical data , Carrier State/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Fiji/epidemiology , Humans , Infant , Male , Pneumococcal Infections/epidemiology , Serogroup , Streptococcus pneumoniae/isolation & purification , Vaccines, Conjugate
13.
Methods Mol Biol ; 1736: 117-128, 2018.
Article in English | MEDLINE | ID: mdl-29322464

ABSTRACT

The emergence of drug resistance threatens to destroy tuberculosis control programs worldwide, with resistance to all first-line drugs and most second-line drugs detected. Drug tolerance (or phenotypic drug resistance) is also likely to be clinically relevant over the 6-month long standard treatment for drug-sensitive tuberculosis. Transcriptional profiling the response of Mycobacterium tuberculosis to antimicrobial drugs offers a novel interpretation of drug efficacy and mycobacterial drug-susceptibility that likely varies in dynamic microenvironments, such as the lung. This chapter describes the noninvasive sampling of tuberculous sputa and techniques for mRNA profiling M. tb bacilli during patient therapy to characterize real-world drug actions.


Subject(s)
Gene Expression Profiling , Mycobacterium tuberculosis/genetics , Sputum/microbiology , Transcriptome , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Humans , Mycobacterium tuberculosis/isolation & purification
14.
Nature ; 549(7671): 160, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28905915
15.
PLoS One ; 11(9): e0163435, 2016.
Article in English | MEDLINE | ID: mdl-27685088

ABSTRACT

Prevalence of pneumococcal serotypes in carriage and disease has been described but absolute serotype colonisation densities have not been reported. 515 paediatric nasal swab DNA extracts were subjected to lytA qPCR and molecular serotyping by microarray. Absolute serotype densities were derived from total pneumococcal density (qPCR cycle threshold and standard curve) and relative abundance (microarray) and varied widely. Compared to all serotype densities observed, the strongest evidence of differences was seen for serotypes 21 and 35B (higher) and 3, 38 and non-typeables (lower) (p<0.05) with a similar hierarchy when only a single serotype carriage was assessed. There was no evidence of any overall density differences between children with single or multiple serotypes detected but serotypes with mid-range densities were more prevalent. The hierarchy of distinct pneumococcal serotype carriage densities described here for the first time, may help explain the dynamics of transmission between children.

16.
J Infect ; 73(3): 210-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27311749

ABSTRACT

OBJECTIVES: We describe the first published cluster of extensively drug resistant Tuberculosis (XDR-TB) in the UK and show how early whole genome sequencing (WGS) of Mtb can assist in case management and contact investigations. METHODS: We describe the contact tracing investigation undertaken after the presentation of an adult with XDR-TB. Active cases were treated with an XDR-TB drug regimen and contacts underwent a programme of follow-up for 2 years. All isolates of Mycobacterium tuberculosis (Mtb) were assessed early using whole genome sequencing (WGS) as well as routine drug susceptibility testing (DST). RESULTS: Thirty-three contacts were screened. In the first year one confirmed and one probable case were identified through contact tracing. A further possible case was identified through epidemiological links. Two confirmed cases were identified through WGS 2 years later. Twenty-five (80%) contacts without evidence of tuberculosis were adherent to 1 year of follow-up and 14 (45%) were adherent to 2 years of follow-up. WGS of Mtb was used to guide drug choices, rapidly identify transmission events, and alter public health management. CONCLUSION: WGS of Mtb enabled rapid effective individualized treatment and facilitated public health interventions by early identification of transmission events.


Subject(s)
Case Management , Contact Tracing , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/transmission , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Adult , Antitubercular Agents/therapeutic use , Child , Disease Outbreaks , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/prevention & control , Female , Humans , London/epidemiology , Male , Middle Aged , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Sequence Analysis, DNA
17.
Appl Environ Microbiol ; 82(17): 5206-15, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27316956

ABSTRACT

UNLABELLED: Nasopharyngeal colonization is important for Streptococcus pneumoniae evolution, providing the opportunity for horizontal gene transfer when multiple strains co-occur. Although colonization with more than one strain of pneumococcus is common, the factors that influence the ability of strains to coexist are not known. A highly variable blp (bacteriocin-like peptide) locus has been identified in all sequenced strains of S. pneumoniae This locus controls the regulation and secretion of bacteriocins, small peptides that target other bacteria. In this study, we analyzed a series of cocolonizing isolates to evaluate the impact of the blp locus on human colonization to determine whether competitive phenotypes of bacteriocin secretion restrict cocolonization. We identified a collection of 135 nasopharyngeal samples cocolonized with two or more strains, totaling 285 isolates. The blp locus of all strains was characterized genetically with regard to pheromone type, bacteriocin/immunity content, and potential for locus functionality. Inhibitory phenotypes of bacteriocin secretion and locus activity were assessed through overlay assays. Isolates from single colonizations (n = 298) were characterized for comparison. Cocolonizing strains had a high diversity of blp cassettes; approximately one-third displayed an inhibitory phenotype in vitro Despite in vitro evidence of competition, pneumococci cocolonized the subjects independently of blp pheromone type (P = 0.577), bacteriocin/immunity content, blp locus activity (P = 0.798), and inhibitory phenotype (P = 0.716). In addition, no significant differences were observed when single and cocolonizing strains were compared. Despite clear evidence of blp-mediated competition in experimental models, the results of our study suggest that the blp locus plays a limited role in restricting pneumococcal cocolonization in humans. IMPORTANCE: Nasopharyngeal colonization with Streptococcus pneumoniae (pneumococcus) is important for pneumococcal evolution, as the nasopharynx represents the major site for horizontal gene transfer when multiple strains co-occur, a phenomenon known as cocolonization. Understanding how pneumococcal strains interact within the competitive environment of the nasopharynx is of chief importance in the context of pneumococcal ecology. In this study, we used an unbiased collection of naturally co-occurring pneumococcal strains and showed that a biological process frequently used by bacteria for competition-bacteriocin production-is not decisive in the coexistence of pneumococci in the host, in contrast to what has been shown in experimental models.


Subject(s)
Bacterial Proteins/metabolism , Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification
18.
Vaccine ; 34(34): 4072-8, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27325351

ABSTRACT

INTRODUCTION: Pneumococcal multiple serotype carriage is important for evolution of the species and to understand how the pneumococcal population is changing with vaccination. We aimed to determine the impact of the 13-valent pneumococcal conjugate vaccine (PCV13) on multiple serotype carriage. METHODS AND MATERIALS: Nasopharyngeal samples from fully vaccinated pneumococcal carriers (4 doses of PCV13, n=141, aged 18-72months) or from non-vaccinated pneumococcal carriers (0 doses of any PCV, n=140, same age group) were analyzed. Multiple serotype carriage was evaluated by DNA hybridization with a molecular serotyping microarray that detects all known serotypes. RESULTS: Vaccinated children had a lower prevalence of multiple serotype carriage than the non-vaccinated group (20.6% vs 29.3%, p=0.097), and a significantly lower proportion of PCV13 serotypes (6.4% vs 38.5%, p=0.0001). PCV13 serotypes found among vaccinated children were mostly detected as a minor serotype in co-colonization with a more abundant non-vaccine serotype. Vaccinated children were colonized by a significantly higher proportion of commensal non-pneumococcal Streptococcus spp. (58.2% vs 42.8%, p=0.012). In vaccinated children there were significantly less non-vaccine type (NVT) co-colonization events than expected based on the distribution of these serotypes in non-vaccinated children. CONCLUSIONS: The results suggest that vaccinated children have lower pneumococcal multiple serotype carriage prevalence due to higher competitive abilities of non-vaccine serotypes expanding after PCV13 use. This might represent an additional benefit of PCV13, as decreased co-colonization rates translate into decreased opportunities for horizontal gene transfer and might have implications for the evolution and virulence of pneumococci.


Subject(s)
Carrier State/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Carrier State/microbiology , Child , Child, Preschool , Humans , Infant , Nasopharynx/microbiology , Pneumococcal Vaccines/therapeutic use , Portugal , Serogroup , Streptococcus pneumoniae/classification
19.
Ecol Evol ; 5(18): 3905-13, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26445651

ABSTRACT

The interactions between plant-eating insects and their hosts have shaped both the insects and the plants, driving evolution of plant defenses and insect specialization. The leaf beetle Trirhabda eriodictyonis (Chrysomelidae) lives on two shrubs with differing defenses: Eriodictyon crassifolium has hairy leaves, whereas E. trichocalyx has resinous leaves. We tested whether these beetles have differentiated onto the two host plants, and if not, whether the beetles prefer the better host plant and prefer mates who are from that host plant. In feeding tests, adult beetles strongly preferred eating E. trichocalyx regardless of which host they came from. In addition, females laid more eggs if they ate E. trichocalyx than E. crassifolium. So, E. trichocalyx is generally the better host. However, beetle mate preference was not in line with food choice. Males did not prefer to mate with females from E. trichocalyx. Females from E. crassifolium did prefer males from E. trichocalyx over males from E. crassifolium, but did not lay more eggs as a result of these matings. We conclude that the beetle populations we studied have not differentiated based on their host plants and may not have even adapted to the better host. Although to humans these host plant defenses differ dramatically, signs that they have caused evolution in the beetles are lacking. The case of T. eriodictyonis stands counter to many other studies that have seen the differentiation of ecotypes and/or adaptive coordination of an herbivore's life cycle based on host plant differences.

20.
BMC Infect Dis ; 15: 234, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26088623

ABSTRACT

BACKGROUND: Carriage of either single or multiple pneumococcal serotypes (multiple carriage) is a prerequisite for developing invasive pneumococcal disease. However, despite the reported high rates of pneumococcal carriage in Malawi, no data on carriage of multiple serotypes has been reported previously. Our study provides the first description of the prevalence of multiple pneumococcal carriage in Malawi. METHODS: The study was conducted in Blantyre and Karonga districts in Malawi, from 2008 to 2012. We recruited 116 children aged 0-13 years. These children were either HIV-infected (N = 44) or uninfected (N = 72). Nasopharyngeal samples were collected using sterile swabs. Pneumococcal serotypes in the samples were identified by microarray. Strains that could not be typed by microarray were sequenced to characterise possible genetic alterations within the capsular polysaccharide (CPS) locus. RESULTS: The microarray identified 179 pneumococcal strains (from 116 subjects), encompassing 43 distinct serotypes and non-typeable (NT) strains. Forty per cent (46/116) of children carried multiple serotypes. Carriage of vaccine type (VT) strains was higher (p = 0.028) in younger (0-2 years) children (71 %, 40/56) compared to older (3-13 years) children (50 %, 30/60). Genetic variations within the CPS locus of known serotypes were observed in 19 % (34/179) of the strains identified. The variants included 13-valent pneumococcal conjugate vaccine (PCV13) serotypes 6B and 19A, and the polysaccharide vaccine serotype 20. Serotype 6B variants were the most frequently isolated (47 %, 16/34). Unlike the wild type, the CPS locus of the 6B variants contained an insertion of the licD-family phosphotransferase gene. The CPS locus of 19A- and 20-variants contained an inversion in the sugar-biosynthesis (rmlD) gene and a 717 bp deletion within the transferase (whaF) gene, respectively. CONCLUSIONS: The high multiple carriage in Malawian children provides opportunities for genetic exchange through horizontal gene transfer. This may potentially lead to CPS locus variants and vaccine escape. Variants reported here occurred naturally, however, PCV13 introduction could exacerbate the CPS genetic variations. Further studies are therefore recommended to assess the invasive potential of these variants and establish whether PCV13 would offer cross-protection. We have shown that younger children (0-2 years) are a reservoir of VT serotypes, which makes them an ideal target for vaccination.


Subject(s)
Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Adolescent , Bacterial Capsules/genetics , Bacteriological Techniques , Child , Child, Preschool , Cross Protection/immunology , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Female , Genetic Variation , HIV Infections/complications , HIV Infections/diagnosis , Humans , Infant , Infant, Newborn , Malawi , Male , Nasopharynx/microbiology , Oligonucleotide Array Sequence Analysis , Phylogeny , Pneumococcal Infections/complications , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Sequence Analysis, DNA , Serogroup , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...