Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Article in English | MEDLINE | ID: mdl-38760425

ABSTRACT

Considerable research has suggested that certain cognitive domains may contribute to cocaine misuse. However, there are gaps in the literature regarding whether cognitive performance before drug exposure predicts susceptibility to cocaine self-administration and how cognitive performance relates to future cocaine intake. Thus, the present study aimed to examine cognitive performance, as measured using automated CANTAB cognitive battery, prior to and following acquisition of cocaine self-administration under a concurrent drug vs. food choice procedure in female and male socially housed cynomolgus macaques. The cognitive battery consisted of measures of associative learning (stimulus and compound discrimination tasks), behavioral flexibility (intradimensional and extradimensional tasks), and behavioral inhibition (stimulus discrimination reversal, SDR, and extra-dimensional reversal tasks). After assessing cognitive performance, monkeys were trained to self-administer cocaine (saline, 0.01-0.1 mg/kg/injection) under a concurrent cocaine vs. food schedule of reinforcement. After a history of cocaine self-administration across 3-4 years, the cognitive battery was re-assessed and compared with sensitivity to cocaine reinforcement. Results showed drug-naïve monkeys that were less accurate on the SDR task, measuring behavioral inhibition, were more sensitive to cocaine reinforcement under the concurrent cocaine vs. food choice procedure. Furthermore, following chronic cocaine self-administration, cocaine intake was a negative predictor of accuracy on the SDR behavioral inhibition task. After cocaine maintenance, monkeys with higher cocaine intakes required more trials to complete the SDR behavioral inhibition task and made more incorrect responses during these trials. No sex or social rank differences were noted. Overall, these findings suggest that cognitive performance may influence vulnerability to cocaine misuse. Also, chronic cocaine may decrease levels of behavioral inhibition as measured via the SDR task in both females and males.

2.
Lancet Neurol ; 23(5): 477-486, 2024 May.
Article in English | MEDLINE | ID: mdl-38631764

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy is a hereditary progressive myopathy caused by aberrant expression of the transcription factor DUX4 in skeletal muscle. No approved disease-modifying treatments are available for this disorder. We aimed to assess the safety and efficacy of losmapimod (a small molecule that inhibits p38α MAPK, a regulator of DUX4 expression, and p38ß MAPK) for the treatment of facioscapulohumeral muscular dystrophy. METHODS: We did a randomised, double-blind, placebo-controlled phase 2b trial at 17 neurology centres in Canada, France, Spain, and the USA. We included adults aged 18-65 years with type 1 facioscapulohumeral muscular dystrophy (ie, with loss of repression of DUX4 expression, as ascertained by genotyping), a Ricci clinical severity score of 2-4, and at least one skeletal muscle judged using MRI to be suitable for biopsy. Participants were randomly allocated (1:1) to either oral losmapimod (15 mg twice a day) or matching placebo for 48 weeks, via an interactive response technology system. The investigator, study staff, participants, sponsor, primary outcome assessors, and study monitor were masked to the treatment allocation until study closure. The primary endpoint was change from baseline to either week 16 or 36 in DUX4-driven gene expression in skeletal muscle biopsy samples, as measured by quantitative RT-PCR. The primary efficacy analysis was done in all participants who were randomly assigned and who had available data for assessment, according to the modified intention-to-treat principle. Safety and tolerability were assessed as secondary endpoints. This study is registered at ClinicalTrials.gov, number NCT04003974. The phase 2b trial is complete; an open-label extension is ongoing. FINDINGS: Between Aug 27, 2019, and Feb 27, 2020, 80 people were enrolled. 40 were randomly allocated to losmapimod and 40 to placebo. 54 (68%) participants were male and 26 (33%) were female, 70 (88%) were White, and mean age was 45·7 (SD 12·5) years. Least squares mean changes from baseline in DUX4-driven gene expression did not differ significantly between the losmapimod (0·83 [SE 0·61]) and placebo (0·40 [0·65]) groups (difference 0·43 [SE 0·56; 95% CI -1·04 to 1·89]; p=0·56). Losmapimod was well tolerated. 29 treatment-emergent adverse events (nine drug-related) were reported in the losmapimod group compared with 23 (two drug-related) in the placebo group. Two participants in the losmapimod group had serious adverse events that were deemed unrelated to losmapimod by the investigators (alcohol poisoning and suicide attempt; postoperative wound infection) compared with none in the placebo group. No treatment discontinuations due to adverse events occurred and no participants died during the study. INTERPRETATION: Although losmapimod did not significantly change DUX4-driven gene expression, it was associated with potential improvements in prespecified structural outcomes (muscle fat infiltration), functional outcomes (reachable workspace, a measure of shoulder girdle function), and patient-reported global impression of change compared with placebo. These findings have informed the design and choice of efficacy endpoints for a phase 3 study of losmapimod in adults with facioscapulohumeral muscular dystrophy. FUNDING: Fulcrum Therapeutics.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Adult , Humans , Male , Female , Middle Aged , Treatment Outcome , Pyridines , Cyclopropanes , Double-Blind Method
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38399452

ABSTRACT

Sex- and age-related differences in symptom prevalence and severity have been widely reported in patients with schizophrenia, yet the underlying mechanisms contributing to these differences are not well understood. N-methyl-D-aspartate (NMDA) receptor hypofunction contributes to schizophrenia pathology, and preclinical models often use NMDA receptor antagonists, including MK-801, to model all symptom clusters. Quantitative electroencephalography (qEEG) represents a translational approach to measure neuronal activity, identify targetable biomarkers in neuropsychiatric disorders and evaluate possible treatments. Abnormalities in gamma power have been reported in patients with schizophrenia and correspond to psychosis and cognitive impairment. Further, as gamma power reflects cortical glutamate and GABA signaling, it is highly sensitive to changes in NMDA receptor function, and NMDA receptor antagonists aberrantly increase gamma power in rodents and humans. To evaluate the role of sex and age on NMDA receptor function, MK-801 (0.03-0.3 mg/kg, SC) was administered to 3- and 9-month-old male and female Sprague-Dawley rats that were implanted with wireless EEG transmitters to measure cortical brain function. MK-801-induced elevations in gamma power were observed in 3-month-old male and female and 9-month-old male rats. In contrast, 9-month-old female rats demonstrated blunted maximal elevations across a wide dose range. Importantly, MK-801-induced hyperlocomotor effects, a common behavioral screen used to examine antipsychotic-like activity, were similar across all groups. Overall, sex-by-age-related differences in gamma power support using qEEG as a translational tool to evaluate pathological progression and predict treatment response across a heterogeneous population.

4.
Work ; 77(3): 755-767, 2024.
Article in English | MEDLINE | ID: mdl-37781843

ABSTRACT

BACKGROUND: The Americans with Disabilities Act (ADA) is a federal law that protects individuals with disabilities from discrimination in all areas of public life. The ADA contributes to equal opportunity across policy areas, including the interconnected domains of higher education and employment. Since the onset of the COVID-19 pandemic in 2020, emerging research has begun to document the disparities in impact on people with disabilities, among other marginalized groups. However, no research to date has reviewed and synthesized literature that addresses disability discrimination related to COVID-19 that has implications for application of the ADA. OBJECTIVE: This rapid evidence review aims to increase understanding about how COVID-19 has resulted in challenges for people with disabilities in the domains of employment and higher education that may be resolved through application of the ADA. METHODS: Keyword searches were conducted in five electronic databases. Title, abstract, and full text screening was conducted followed by a thematic analysis of key ADA themes. RESULTS: Twelve final articles were included in this review, eight categorized within higher education and four within employment. In relation to the ADA and COVID-19, five studies revealed findings related to web accessibility, eight related to effective communication, and four related to reasonable accommodations. CONCLUSION: The findings provide a broad overview of the current research on how COVID-19 has affected accessibility, communications and accommodations in employment and higher education and identify gaps in the literature within these policy domains.


Subject(s)
COVID-19 , Disabled Persons , United States/epidemiology , Humans , Pandemics , COVID-19/epidemiology , Employment , Policy
5.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38100268

ABSTRACT

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Subject(s)
Interferon-gamma , Sepsis , Humans , Interferon-gamma/metabolism , Immunosorbents/therapeutic use , Prospective Studies , Biomarkers
6.
Eval Program Plann ; 102: 102367, 2024 02.
Article in English | MEDLINE | ID: mdl-37708627

ABSTRACT

People with disabilities face many barriers in the built environment impacting their mobility, health, and social participation. In the US, under the Americans with Disabilities Act (ADA), municipalities were required to develop and implement barrier-removal plans for pedestrian infrastructure, called ADA transition plans, but very few have done so. Many communities know they need a plan but do not know how to get it done because of a lack of understanding of the many different implementation considerations. Implementation science offers a useful approach for understanding complex policy implementation such as ADA plans. This paper provides a reflection on the adaptation of the Consolidated Framework for Implementation Research (CFIR) to evaluate the implementation of ADA transition planning. To apply the CFIR, we tailored the construct definitions and modified them to fit the specific context of the ADA transition planning process. We documented the constructs that were more challenging to apply, those that were not relevant, and those that were particularly useful. This paper can serve as a valuable example that other researchers can use when considering adapting the CFIR or other implementation frameworks for the evaluation of complex social policy beyond the ADA.


Subject(s)
Implementation Science , Public Policy , Humans , United States , Program Evaluation , Health Plan Implementation , Qualitative Research
7.
medRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37745385

ABSTRACT

BACKGROUND: Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS: An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS: Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS: A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.

9.
Life (Basel) ; 13(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37109474

ABSTRACT

In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.

10.
Int Rev Neurobiol ; 168: 93-175, 2023.
Article in English | MEDLINE | ID: mdl-36868636

ABSTRACT

Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Receptors, Metabotropic Glutamate , Humans , Central Nervous System , Sleep , Glutamates
11.
Neuropharmacology ; 227: 109424, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36720403

ABSTRACT

Recent evidence suggests that inhibition of the M5 muscarinic acetylcholine receptor (mAChR) may provide a novel non-opioid mechanism for the treatment of opioid use disorder (OUD). Previous studies from our group and others have demonstrated that acute administration of the long-acting M5 negative allosteric modulator (NAM) ML375 attenuates established self-administration of cocaine, ethanol, oxycodone, and remifentanil in rats. In the present study, we characterized the effects of acute and repeated administration of the novel, short-acting M5 NAM VU6008667 on the reinforcing effects of oxycodone and reinstatement of oxycodone-seeking behaviors in male Sprague-Dawley rats, as well as on physiological withdrawal from oxycodone. Acute VU6008667 decreased oxycodone self-administration under both fixed ratio 3 (FR3) and progressive ratio (PR) schedules of reinforcement and attenuated cue-induced reinstatement of lever pressing following extinction from oxycodone self-administration, a commonly used relapse model. When administered daily to opioid-naïve rats, VU6008667 prevented acquisition of oxycodone self-administration behavior. VU6008667 had minimal effects on naloxone-precipitated withdrawal. After acute administration, VU6008667 did not inhibit sucrose self-administration and, when given chronically, delayed but did not prevent acquisition of sucrose maintained self-administration. VU6008667 also did not impact oxycodone induced anti-nociception or motor coordination, but mildly decreased novelty exploration. Finally, acute or daily VU6008667 administration did not impair cued fear conditioning. Overall, these results suggest that inhibition of the M5 mAChR may provide a novel, non-opioid based treatment for distinct aspects of OUD by inhibiting opioid intake in established OUD, reducing relapse during abstinence, and by reducing the risk of developing OUD.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Animals , Male , Rats , Oxycodone , Rats, Sprague-Dawley , Receptors, Muscarinic , Self Administration , Sucrose/pharmacology
12.
Surg Infect (Larchmt) ; 23(10): 893-901, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36383156

ABSTRACT

Background: Since its emergence in early 2020, coronavirus disease 2019 (COVID-19)-associated pneumonia has caused a global strain on intensive care unit (ICU) resources with many intubated patients requiring prolonged ventilatory support. Outcomes for patients with COVID-19 who receive prolonged intubation (>21 days) and possible predictors of mortality in this group are not well established. Patients and Methods: Data were prospectively collected from adult patients with COVID-19 requiring mechanical ventilation from March 2020 through December 2021 across a system of 11 hospitals. The primary end point was in-hospital mortality. Factors associated with mortality were evaluated using univariable and multivariable logistic regression analyses. Results: Six hundred six patients were placed on mechanical ventilation for COVID-19 pneumonia during the study period, with in-hospital mortality of 40.3% (n = 244). Increased age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.03-1.09), increased creatinine (OR, 1.40; 95% CI, 1.08-1.82), and receiving corticosteroids (OR, 2.68; 95% CI, 1.20-5.98) were associated with mortality. Intubations lasting longer than 21 days (n = 140) had a lower in-hospital mortality of 25.7% (n = 36; p < 0.001). Increasing Elixhauser comorbidity index (OR, 1.12; 95% CI, 1.04-1.19) and receiving corticosteroids (OR, 1.92; 95% CI, 1.06-3.47) were associated with need for prolonged ventilation. In this group, increased age (OR, 1.06; 95% CI, 1.01-1.08) and non-English speaking (OR, 3.74; 95% CI, 1.13-12.3) were associated with mortality. Conclusions: In-hospital mortality in mechanically ventilated patients with COVID-19 pneumonia occurs primarily in the first 21 days after intubation, possibly related to the early active inflammatory process. In patients on prolonged mechanical ventilation, increased age and being non-English speaking were associated with mortality.


Subject(s)
COVID-19 , Respiration, Artificial , Humans , COVID-19/therapy , Intubation , Hospital Mortality
13.
Biomolecules ; 12(4)2022 03 28.
Article in English | MEDLINE | ID: mdl-35454099

ABSTRACT

Cocaine use disorder has been reported to cause transgenerational effects. However, due to the lack of standardized biomarkers, the effects of cocaine use during pregnancy on postnatal development and long-term neurobiological and behavioral outcomes have not been investigated thoroughly. Therefore, in this study, we examined extracellular vesicles (EVs) in adult (~12 years old) female and male rhesus monkeys prenatally exposed to cocaine (n = 11) and controls (n = 9). EVs were isolated from the cerebrospinal fluid (CSF) and characterized for the surface expression of specific tetraspanins, concentration (particles/mL), size distribution, and cargo proteins by mass spectrometry (MS). Transmission electron microscopy following immunogold labeling for tetraspanins (CD63, CD9, and CD81) confirmed the successful isolation of EVs. Nanoparticle tracking analyses showed that the majority of the particles were <200 nm in size, suggesting an enrichment for small EVs (sEV). Interestingly, the prenatally cocaine-exposed group showed ~54% less EV concentration in CSF compared to the control group. For each group, MS analyses identified a number of proteins loaded in CSF-EVs, many of which are commonly listed in the ExoCarta database. Ingenuity pathway analysis (IPA) demonstrated the association of cargo EV proteins with canonical pathways, diseases and disorders, upstream regulators, and top enriched network. Lastly, significantly altered proteins between groups were similarly characterized by IPA, suggesting that prenatal cocaine exposure could be potentially associated with long-term neuroinflammation and risk for neurodegenerative diseases. Overall, these results indicate that CSF-EVs could potentially serve as biomarkers to assess the transgenerational adverse effects due to prenatal cocaine exposure.


Subject(s)
Cocaine , Extracellular Vesicles , Animals , Biomarkers/metabolism , Cocaine/adverse effects , Cocaine/analysis , Cocaine/metabolism , Extracellular Vesicles/metabolism , Female , Macaca mulatta , Male , Mass Spectrometry , Pregnancy , Proteome/metabolism , Tetraspanins/metabolism
14.
Front Neurosci ; 15: 700822, 2021.
Article in English | MEDLINE | ID: mdl-34276300

ABSTRACT

Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.

15.
Pharmacol Biochem Behav ; 207: 173217, 2021 08.
Article in English | MEDLINE | ID: mdl-34116078

ABSTRACT

BACKGROUND: Drugs that increase inhibitory neuronal activity in the brain have been proposed as potential medications for stimulant use disorders. OBJECTIVE: The present study assessed the ability of chronically administered levetiracetam (Keppra®), a clinically available anticonvulsant drug that increases GABA by binding to synaptic vesicle glycoprotein 2A, to modulate the reinforcing strength of cocaine in monkeys. METHODS: Three adult male rhesus monkeys (Macaca mulatta) self-administered cocaine intravenously each day under a progressive-ratio (PR) schedule of reinforcement. Two monkeys also responded to receive food pellets under a 50-response fixed-ratio schedule (FR 50) each morning. After determining a cocaine dose-response curve (0.001-0.3 mg/kg per injection, i.v.) in the evening, levetiracetam (5-75 mg/kg, p.o., b.i.d.) was administered for 12-16 days per dose. To model a treatment setting, cocaine self-administration sessions were conducted using the PR schedule every 4 days during levetiracetam treatment. After tapering the dose of levetiracetam over two weeks in the absence of cocaine sessions, cocaine dose-effect curves were re-determined. RESULTS: Lower doses of levetiracetam produced non-systematic fluctuations in numbers of cocaine injections received in each subject, whereas the highest tested dose significantly increased the reinforcing strength of cocaine; no effects on food-maintained responding were observed. After termination of levetiracetam treatment, dose-effect curves for cocaine self-administration were shifted to the left in two monkeys. CONCLUSION: These data suggest that levetiracetam is not likely to be an efficacious pharmacotherapy for cocaine dependence. Rather, sensitivity to cocaine may be increased during and after levetiracetam treatment.


Subject(s)
Anticonvulsants/pharmacology , Cocaine-Related Disorders/drug therapy , Cocaine/pharmacology , Levetiracetam/pharmacology , Reinforcement, Psychology , Animals , Anticonvulsants/administration & dosage , Cocaine/administration & dosage , Cocaine-Related Disorders/metabolism , Dopamine Uptake Inhibitors/administration & dosage , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Administration Schedule , Levetiracetam/administration & dosage , Macaca mulatta , Male , Reinforcement Schedule , Self Administration
16.
Life (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670172

ABSTRACT

Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.

17.
Environ Health Perspect ; 128(11): 115001, 2020 11.
Article in English | MEDLINE | ID: mdl-33170741

ABSTRACT

BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745.


Subject(s)
Air Pollution , COVID-19 , Coronavirus , Severe Acute Respiratory Syndrome , Climate Change , Disease Outbreaks , Epidemiologic Studies , Humans , SARS-CoV-2
18.
Neuropsychopharmacology ; 45(13): 2219-2228, 2020 12.
Article in English | MEDLINE | ID: mdl-32868847

ABSTRACT

Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.


Subject(s)
Neurodegenerative Diseases , Rodentia , Allosteric Regulation , Animals , Arousal , Mice , Primates , Pyridines , Pyrroles , Rats , Receptor, Muscarinic M1 , Sleep
19.
Genes Brain Behav ; 19(7): e12654, 2020 09.
Article in English | MEDLINE | ID: mdl-32248644

ABSTRACT

Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.


Subject(s)
Amphetamine-Related Disorders/genetics , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Receptors, Metabotropic Glutamate/genetics , Animals , Female , Learning , Male , Mice , Neurodevelopmental Disorders/physiopathology , Phenotype , Receptors, Metabotropic Glutamate/deficiency , Sleep , Social Behavior
20.
Adv Pharmacol ; 86: 153-196, 2019.
Article in English | MEDLINE | ID: mdl-31378251

ABSTRACT

Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.


Subject(s)
Receptors, Muscarinic/metabolism , Schizophrenia/drug therapy , Substance-Related Disorders/drug therapy , Allosteric Regulation/drug effects , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...