Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018108

ABSTRACT

Antidepressants are one of the most globally prescribed classes of pharmaceuticals, and drug target conservation across phyla means that nontarget organisms may be at risk from the effects of exposure. Here, we address the knowledge gap for the effects of chronic exposure (28 days) to the tricyclic antidepressant amitriptyline (AMI) on fish, including for concentrations with environmental relevance, using zebrafish (Danio rerio) as our experimental model. AMI was found to bioconcentrate in zebrafish, was readily transformed to its major active metabolite nortriptyline, and induced a pharmacological effect (downregulation of the gene encoding the serotonin transporter; slc6a4a) at environmentally relevant concentrations (0.03 µg/L and above). Exposures to AMI at higher concentrations accelerated the hatch rate and reduced locomotor activity, the latter of which was abolished after a 14 day period of depuration. The lack of any response on the features of physiology and behavior we measured at concentrations found in the environment would indicate that AMI poses a relatively low level of risk to fish populations. The pseudopersistence and likely presence of multiple drugs acting via the same mechanism of action, however, together with a global trend for increased prescription rates, mean that this risk may be underestimated using current ecotoxicological assessment paradigms.

2.
Environ Sci Technol ; 55(24): 16299-16312, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34856105

ABSTRACT

Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.


Subject(s)
Water Pollutants, Chemical , Animals , Antidepressive Agents/toxicity , Fishes , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...