Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38858074

ABSTRACT

The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.

2.
Article in English | MEDLINE | ID: mdl-38860285

ABSTRACT

The internal anal sphincter (IAS) functions to maintain continence. Previous studies utilizing mice with cell-specific expression of GCaMP6f revealed two distinct subtypes of intramuscular interstitial cells of Cajal (ICC-IM) with differing Ca2+ activities in the IAS. The current study further examined Ca2+ activity in ICC-IM and its modulation by inhibitory neurotransmission. The spatiotemporal properties of Ca2+ transients in Type II ICC-IM mimicked those of smooth muscle cells (SMCs) indicating their joint participation in the "SIP" syncytium. Electrical field stimulation (EFS; atropine present) abolished localized and whole-cell Ca2+ transients in Type I and II ICC-IM. The purinergic antagonist MRS2500 did not abolish EFS responses in either cell type whereas the NOS inhibitor L-NNA abolished responses in Type I but not Type II ICC-IM. Combined antagonists abolished EFS responses in Type II ICC-IM. In both ICC-IM subtypes, the ability of EFS to inhibit Ca2+ release was abolished by L-NNA, but not MRS2500 suggesting that the nitrergic pathway directly inhibits ICC-IM by blocking Ca2+ release from intracellular stores. Since IRAG1 is expressed in ICC-IM it is possible that it participates in the inhibition of Ca2+ release by nitric oxide. PDGFRᵯC+ cells but not ICC-IM expressed P2Y1R and SK3 suggesting that the purinergic pathway indirectly blocks whole-cell Ca2+ transients in Type II ICC-IM via PDGFRᵯC+ cells. This study provides the first direct evidence for functional coupling between inhibitory motor neurons and ICC-IM subtypes in the IAS with contractile inhibition ultimately dependent upon electrical coupling between SMCs, ICC and PDGFRᵯC+ cells via the SIP syncytium.

3.
J Neurosci ; 43(32): 5741-5752, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37474311

ABSTRACT

Neurotransmission is shaped by extracellular pH. Alkalization enhances pH-sensitive transmitter release and receptor activation, whereas acidification inhibits these processes and can activate acid-sensitive conductances in the synaptic cleft. Previous work has shown that the synaptic cleft can either acidify because of synaptic vesicular release and/or alkalize because of Ca2+ extrusion by the plasma membrane ATPase (PMCA). The direction of change differs across synapse types. At the mammalian neuromuscular junction (NMJ), the direction and magnitude of pH transients in the synaptic cleft during transmission remain ambiguous. We set out to elucidate the extracellular pH transients that occur at this cholinergic synapse under near-physiological conditions and identify their sources. We monitored pH-dependent changes in the synaptic cleft of the mouse levator auris longus using viral expression of the pseudoratiometric probe pHusion-Ex in the muscle. Using mice from both sexes, a significant and prolonged alkalization occurred when stimulating the connected nerve for 5 s at 50 Hz, which was dependent on postsynaptic intracellular Ca2+ release. Sustained stimulation for a longer duration (20 s at 50 Hz) caused additional prolonged net acidification at the cleft. To investigate the mechanism underlying cleft alkalization, we used muscle-expressed GCaMP3 to monitor the contribution of postsynaptic Ca2+ Activity-induced liberation of intracellular Ca2+ in muscle positively correlated with alkalization of the synaptic cleft, whereas inhibiting PMCA significantly decreased the extent of cleft alkalization. Thus, cholinergic synapses of the mouse NMJ typically alkalize because of cytosolic Ca2+ liberated in muscle during activity, unless under highly strenuous conditions where acidification predominates.SIGNIFICANCE STATEMENT Changes in synaptic cleft pH alter neurotransmission, acting on receptors and channels on both sides of the synapse. Synaptic acidification has been associated with a myriad of diseases in the central and peripheral nervous system. Here, we report that in near-physiological recording conditions the cholinergic neuromuscular junction shows use-dependent bidirectional changes in synaptic cleft pH-immediate alkalinization and a long-lasting acidification under prolonged stimulation. These results provide further insight into physiologically relevant changes at cholinergic synapses that have not been defined previously. Understanding and identifying synaptic pH transients during and after neuronal activity provides insight into short-term synaptic plasticity synapses and may identify therapeutic targets for diseases.


Subject(s)
Calcium , Synapses , Female , Male , Animals , Mice , Calcium/metabolism , Synapses/physiology , Neuromuscular Junction/metabolism , Synaptic Transmission/physiology , Cholinergic Agents , Mammals
4.
PLoS One ; 18(3): e0283736, 2023.
Article in English | MEDLINE | ID: mdl-37000822

ABSTRACT

In studies exploring the potential for nanosecond duration electric pulses to serve as a novel modality for neuromodulation, we found that a 5 ns pulse triggers an immediate rise in [Ca2+]i in isolated bovine adrenal chromaffin cells. To facilitate ongoing efforts to understand underlying mechanisms and to work toward carrying out investigations in cells in situ, we describe the suitability and advantages of using isolated murine adrenal chromaffin cells expressing, in a Cre-dependent manner, the genetically-encoded Ca2+indicator GCaMP6f. Initial experiments confirmed that Ca2+ responses evoked by a 5 ns pulse were similar between fluorescent Ca2+ indicator-loaded murine and bovine chromaffin cells, thereby establishing that 5 ns-elicited excitation of chromaffin cells occurs reproducibly across species. In GCaMP6f-expressing murine chromaffin cells, spontaneous Ca2+ activity as well as nicotinic receptor agonist- and 5 ns evoked-Ca2+ responses consistently displayed similar kinetic characteristics as those in dye-loaded cells but with two-twentyfold greater amplitudes and without photobleaching. The high signal-to-noise ratio of evoked Ca2+ responses as well as spontaneous Ca2+ activity was observed in cells derived from Sox10-Cre, conditional GCaMP6f mice or TH-Cre, conditional GCaMP6f mice, although the number of cells expressing GCaMP6f at sufficiently high levels for achieving high signal-to-noise ratios was greater in Sox10-Cre mice. As in bovine cells, Ca2+ responses elicited in murine GCaMP6f-expressing cells by a 5 ns pulse were mediated by the activation of voltage-gated Ca2+ channels but not tetrodotoxin-sensitive voltage-gated Na+ channels. We conclude that genetically targeting GCaMP6f expression to murine chromaffin cells represents a sensitive and valuable approach to investigate spontaneous, receptor agonist- and nanosecond electric pulse-induced Ca2+ responses in vitro. This approach will also facilitate future studies investigating the effects of ultrashort electric pulses on cells in ex vivo slices of adrenal gland, which will lay the foundation for using nanosecond electric pulses to stimulate neurosecretion in vivo.


Subject(s)
Calcium , Chromaffin Cells , Animals , Cattle , Mice , Calcium/metabolism , Mice, Transgenic , Chromaffin Cells/physiology , Adrenal Glands/metabolism , Electricity , Cells, Cultured
5.
Glia ; 71(4): 926-944, 2023 04.
Article in English | MEDLINE | ID: mdl-36479906

ABSTRACT

Non-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.1, an inward-rectifying K+ channel encoded by the KCNJ10 gene, is specifically expressed and active in NMSC. Immunostaining revealed that Kir4.1 is present in terminal/perisynaptic SCs (TPSC), synaptic glia at neuromuscular junctions (NMJ), but not in myelinating SCs (MSC) of adult mice. To further examine the expression pattern of Kir4.1, we generated BAC transgenic Kir4.1-CreERT2 mice and crossed them to the tdTomato reporter line. Activation of CreERT2 with tamoxifen after the completion of myelination onset led to robust expression of tdTomato in NMSC, including Remak Schwann cells (RSC) along peripheral nerves and TPSC, but not in MSC. In contrast, activating CreERT2 before and during the onset of myelination led to tdTomato expression in NMSC and MSC. These observations suggest that immature SC express Kir4.1, and its expression is then downregulated selectively in myelin-forming SC. In support, we found that while activating CreERT2 induces tdTomato expression in immature SC, it fails to induce tdTomato in MSC associated with sensory axons in culture. NMSC derived from neonatal sciatic nerve were shown to express Kir4.1 and exhibit barium-sensitive inwardly rectifying macroscopic K+ currents. Thus, this study identified Kir4.1 as a potential modulator of immature SC and NMSC function. Additionally, it established a novel transgenic mouse line to introduce or delete genes in NMSC.


Subject(s)
Myelin Sheath , Schwann Cells , Mice , Animals , Schwann Cells/metabolism , Myelin Sheath/metabolism , Mice, Transgenic , Sciatic Nerve/metabolism , Tamoxifen/pharmacology
6.
Proc Natl Acad Sci U S A ; 119(18): e2123020119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35446689

ABSTRACT

The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.


Subject(s)
Interstitial Cells of Cajal , Colon/physiology , Gastrointestinal Motility/physiology , Myocytes, Smooth Muscle , Peristalsis
7.
Arch Biochem Biophys ; 723: 109252, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35436445

ABSTRACT

In whole-cell voltage clamped bovine adrenal chromaffin cells maintained at a holding potential of -70 mV, a single 5 ns, 5 MV/m pulse elicited an inward current carried mainly by Na+ that displayed inward rectification and a reversal potential near -3 mV, a voltage consistent with a non-selective cation current. The broad-spectrum inhibitors of transient receptor potential (TRP) channels, La3+ (10 µM), Gd3+ (10 µM), SKF-96365 (50 µM) and 2-aminoethoxydiphenyl borane (2-APB; 100 µM), inhibited the current similarly by ∼72%, ∼83%, ∼68% and ∼76%, respectively. Depleting membrane cholesterol with methyl-ß-cyclodextrin (MßCD; 1-6 mg/ml) or inhibiting phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis with wortmannin (20 and 40 µM) produced a similar level of inhibition on the NEP-induced conductance as the broad spectrum TRP channel inhibitors. Moreover, no additive inhibitory effect was detected by combining MßCD (3 mg/ml), wortmannin (20 µM) and La3+ (10 µM), suggesting that each agent targeted different levels of the same pathway to exert a full effect. RT-PCR experiments revealed robust expression at the mRNA level of TRPC4, TRPC5 and TRPM7 channels for which specific blockers were available. Whereas the TRPM7 blocker FTY720 had no effect, the TRPC4/5 channel inhibitor M084 (20 µM) blocked the conductance by ∼50%, indicating that TRPC4 and/or TRPC5 channel(s) may be partially involved in mediating the NEP-induced current. CP-96345 (20 µM), a specific blocker of the sodium leak current channel (NALCN), also reduced the NEP-induced current. The inhibition was ∼30% and additive to that caused by the TRPC4/5 blocker M084. RT-PCR experiments confirmed the expression of this channel at the mRNA level. Taken as a whole, these data provide evidence that a large fraction of the current evoked by a 5 ns pulse in adrenal chromaffin cells may be carried by both TRPC4/5 channels and the NALCN channel. Understanding the biophysical properties of the NEP-elicited conductance in a neural-type cell will be extremely valuable for the future development of NEP stimulation approaches for neuromodulation.


Subject(s)
Chromaffin Cells , TRPM Cation Channels , Animals , Cations/metabolism , Cattle , Chromaffin Cells/metabolism , Membrane Potentials , RNA, Messenger/metabolism , TRPC Cation Channels/metabolism , TRPM Cation Channels/metabolism , Wortmannin/metabolism , Wortmannin/pharmacology
8.
Dev Biol ; 476: 272-281, 2021 08.
Article in English | MEDLINE | ID: mdl-33905720

ABSTRACT

Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.


Subject(s)
Oculomotor Muscles/innervation , Oculomotor Nerve/embryology , Animals , Axons/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Mice , Muscle Development , Myogenic Regulatory Factor 5/metabolism , Oculomotor Muscles/growth & development , Oculomotor Muscles/metabolism , Oculomotor Nerve/metabolism , Pregnancy , Transcription Factors/metabolism , Homeobox Protein PITX2
9.
Gastroenterology ; 161(2): 608-622.e7, 2021 08.
Article in English | MEDLINE | ID: mdl-33895170

ABSTRACT

BACKGROUND & AIMS: Constipation is commonly associated with diabetes. Serotonin (5-HT), produced predominantly by enterochromaffin (EC) cells via tryptophan hydroxylase 1 (TPH1), is a key modulator of gastrointestinal (GI) motility. However, the role of serotonergic signaling in constipation associated with diabetes is unknown. METHODS: We generated EC cell reporter Tph1-tdTom, EC cell-depleted Tph1-DTA, combined Tph1-tdTom-DTA, and interstitial cell of Cajal (ICC)-specific Kit-GCaMP6 mice. Male mice and surgically ovariectomized female mice were fed a high-fat high-sucrose diet to induce diabetes. The effect of serotonergic signaling on GI motility was studied by examining 5-HT receptor expression in the colon and in vivo GI transit, colonic migrating motor complexes (CMMCs), and calcium imaging in mice treated with either a 5-HT2B receptor (HTR2B) antagonist or agonist. RESULTS: Colonic transit was delayed in males with diabetes, although colonic Tph1+ cell density and 5-HT levels were increased. Colonic transit was not further reduced in diabetic mice by EC cell depletion. The HTR2B protein, predominantly expressed by colonic ICCs, was markedly decreased in the colonic muscles of males and ovariectomized females with diabetes. Ca2+ activity in colonic ICCs was decreased in diabetic males. Treatment with an HTR2B antagonist impaired CMMCs and colonic motility in healthy males, whereas treatment with an HTR2B agonist improved CMMCs and colonic motility in males with diabetes. Colonic transit in ovariectomized females with diabetes was also improved significantly by the HTR2B agonist treatment. CONCLUSIONS: Impaired colonic motility in mice with diabetes was improved by enhancing HTR2B signaling. The HTR2B agonist may provide therapeutic benefits for constipation associated with diabetes.


Subject(s)
Colon/drug effects , Constipation/prevention & control , Diabetes Complications/prevention & control , Gastrointestinal Motility/drug effects , Indoles/pharmacology , Interstitial Cells of Cajal/drug effects , Myoelectric Complex, Migrating/drug effects , Receptor, Serotonin, 5-HT2B/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Thiophenes/pharmacology , Animals , Calcium Signaling , Colon/metabolism , Colon/physiopathology , Constipation/etiology , Constipation/metabolism , Constipation/physiopathology , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Disease Models, Animal , Female , Genes, Reporter , Interstitial Cells of Cajal/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Ovariectomy , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin/metabolism , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
10.
J Med Chem ; 63(19): 11131-11148, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32894018

ABSTRACT

Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships. The properties of analogues, including solubility, stability, and toxicity, suggest that the BHC scaffold may be useful for developing therapeutics. Inhibition of actin-activated ATPase activity of fast skeletal and cardiac muscle myosin II, inhibition of skeletal muscle contractility ex vivo, and slowing of in vitro actin-sliding velocity were measured. Several analogues with aromatic side arms showed improved potency (half-maximal inhibitory concentration (IC50) <1 µM) and selectivity (≥12-fold) for skeletal myosin versus cardiac myosin compared to BHC. Several analogues blocked neurotransmission, suggesting that they are selective for nonmuscle myosin II over skeletal myosin. Competition and molecular docking studies suggest that BHC and blebbistatin bind to the same site on myosin.


Subject(s)
4-Hydroxycoumarins/chemistry , 4-Hydroxycoumarins/pharmacology , Imines/chemistry , Myosins/antagonists & inhibitors , 4-Hydroxycoumarins/chemical synthesis , Adenosine Triphosphatases/antagonists & inhibitors , Molecular Docking Simulation , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Structure-Activity Relationship
11.
Neurosci Lett ; 729: 134959, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32339610

ABSTRACT

In addition to providing structural, metabolic and trophic support to neurons, glial cells of the central, peripheral and enteric nervous systems (CNS, PNS, ENS) respond to and regulate neural activity. One of the most well characterized features of this response is an increase of intracellular calcium. Astrocytes at synapses of the CNS, oligodendrocytes along axons of the CNS, enteric glia associated with the cell bodies and axonal varicosities of the ENS, and Schwann cells at the neuromuscular junction (NMJ) and along peripheral nerves of the PNS, all exhibit this response. Recent technical advances have facilitated the imaging of neural activity-dependent calcium responses in large populations of glial cells and thus provided a new tool to evaluate the physiological significance of these responses. This mini-review summarizes the mechanisms and functional role of activity-induced calcium signaling within Schwann cells, including terminal/perisynaptic Schwann cells (TPSCs) at the NMJ and axonal Schwann cells (ASCs) within peripheral nerves.


Subject(s)
Calcium Signaling/physiology , Cell Communication/physiology , Neuromuscular Junction/physiology , Schwann Cells/metabolism , Animals , Humans , Neuroglia/metabolism , Neurons/metabolism
12.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G210-G221, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31268770

ABSTRACT

The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.


Subject(s)
Cholinergic Neurons , Colon , Nitrergic Neurons , Nitroarginine/pharmacology , Peristalsis , Animals , Animals, Genetically Modified , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Colon/innervation , Colon/physiology , Enteric Nervous System/drug effects , Enteric Nervous System/physiology , Enzyme Inhibitors/pharmacology , Mice , Muscle Contraction/drug effects , Muscle Contraction/physiology , Myoelectric Complex, Migrating/drug effects , Myoelectric Complex, Migrating/physiology , Nitrergic Neurons/drug effects , Nitrergic Neurons/physiology , Nitric Oxide Synthase/antagonists & inhibitors , Optogenetics , Peristalsis/drug effects , Peristalsis/physiology
13.
PLoS Genet ; 15(3): e1007948, 2019 03.
Article in English | MEDLINE | ID: mdl-30870413

ABSTRACT

Glial cells regulate multiple aspects of synaptogenesis. In the absence of Schwann cells, a peripheral glial cell, motor neurons initially innervate muscle but then degenerate. Here, using a genetic approach, we show that neural activity-regulated negative factors produced by muscle drive neurodegeneration in Schwann cell-deficient mice. We find that thrombin, the hepatic serine protease central to the hemostatic coagulation cascade, is one such negative factor. Trancriptomic analysis shows that expression of the antithrombins serpin C1 and D1 is significantly reduced in Schwann cell-deficient mice. In the absence of peripheral neuromuscular activity, neurodegeneration is completely blocked, and expression of prothrombin in muscle is markedly reduced. In the absence of muscle-derived prothrombin, neurodegeneration is also markedly reduced. Together, these results suggest that Schwann cells regulate NMJs by opposing the effects of activity-regulated, muscle-derived negative factors and provide the first genetic evidence that thrombin plays a central role outside of the coagulation system.


Subject(s)
Antithrombin III/genetics , Heparin Cofactor II/genetics , Neuromuscular Junction/genetics , Prothrombin/genetics , Synapses/genetics , Animals , Gene Expression Profiling , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Nerve Degeneration/genetics , Neuroglia , Neuromuscular Junction/growth & development , Schwann Cells/metabolism , Thrombin/genetics
14.
J Vis Exp ; (140)2018 10 04.
Article in English | MEDLINE | ID: mdl-30346388

ABSTRACT

The electrical activity of cells in tissues can be monitored by electrophysiological techniques, but these are usually limited to the analysis of individual cells. Since an increase of intracellular calcium (Ca2+) in the cytosol often occurs because of the electrical activity, or in response to a myriad of other stimuli, this process can be monitored by the imaging of cells loaded with fluorescent calcium-sensitive dyes.  However, it is difficult to image this response in an individual cell type within whole tissue because these dyes are taken up by all cell types within the tissue. In contrast, genetically encoded calcium indicators (GECIs) can be expressed by an individual cell type and fluoresce in response to an increase of intracellular Ca2+, thus permitting the imaging of Ca2+ signaling in entire populations of individual cell types. Here, we apply the use of the GECIs GCaMP3/6 to the mouse neuromuscular junction, a tripartite synapse between motor neurons, skeletal muscle, and terminal/perisynaptic Schwann cells. We demonstrate the utility of this technique in classic ex vivo tissue preparations. Using an optical splitter, we perform dual-wavelength imaging of dynamic Ca2+ signals and a static label of the neuromuscular junction (NMJ) in an approach that could be easily adapted to monitor two cell-specific GECI or genetically encoded voltage indicators (GEVI) simultaneously. Finally, we discuss the routines used to capture spatial maps of fluorescence intensity. Together, these optical, transgenic, and analytic techniques can be employed to study the biological activity of distinct cell subpopulations at the NMJ in a wide variety of contexts.


Subject(s)
Calcium Signaling/physiology , Diaphragm/innervation , Neuromuscular Junction/metabolism , Optical Imaging/methods , Animals , Calcium/metabolism , Calcium Signaling/genetics , Fluorescent Dyes/metabolism , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
15.
J Neurosci ; 38(40): 8650-8665, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30143570

ABSTRACT

Terminal or perisynaptic Schwann cells (TPSCs) are nonmyelinating, perisynaptic glial cells at the neuromuscular junction (NMJ) that respond to neural activity by increasing intracellular calcium (Ca2+) and regulate synaptic function. The onset of activity-induced TPSC Ca2+ responses, as well as whether axonal Schwann cells (ASCs) along the nerve respond to nerve stimulation during development, is unknown. Here, we show that phrenic nerve stimulation in developing male and female mice elicited Ca2+ responses in both ASCs and TPSCs at embryonic day 14. ASC responses were lost in a proximo-distal gradient over time, but could continue to be elicited by bath application of neurotransmitter, suggesting that a loss of release rather than a change in ASC competence accounted for this response gradient. Similar to those of early postnatal TPSCs, developing ASC/TPSC responses were mediated by purinergic P2Y1 receptors. The loss of ASC Ca2+ responses was correlated to the proximo-distal disappearance of synaptophysin immunoreactivity and synaptic vesicles in phrenic axons. Accordingly, developing ASC Ca2+ responses were blocked by botulinum toxin. Interestingly, the loss of ASC Ca2+ responses was also correlated to the proximo-distal development of myelination. Finally, compared with postnatal TPSCs, neonatal TPSCs and ASCs displayed Ca2+ signals in response to lower frequencies and shorter durations of nerve stimulation. Together, these results with GCaMP3-expressing Schwann cells provide ex vivo evidence that both axons and presynaptic terminals initially exhibit activity-induced vesicular release of neurotransmitter, but that the subsequent loss of axonal synaptic vesicles accounts for the postnatal restriction of vesicular release to the NMJ.SIGNIFICANCE STATEMENT Neural activity regulates multiple aspects of development, including myelination. Whether the excitation of developing neurons in vivo results in the release of neurotransmitter from both axons and presynaptic terminals is unclear. Here, using mice expressing the genetically encoded calcium indicator GCaMP3 in Schwann cells, we show that both terminal/perisynaptic Schwann cells at the diaphragm neuromuscular junction and axonal Schwann cells along the phrenic nerve exhibit activity-induced calcium responses early in development, mediated by the vesicular release of ATP from the axons of motor neurons acting on P2Y1 receptors. These ex vivo findings corroborate classic in vitro studies demonstrating transmitter release by developing axons, and thus represent a tool to study the mechanisms and significance of this process during embryonic development.


Subject(s)
Calcium Signaling , Neuromuscular Junction/embryology , Presynaptic Terminals/metabolism , Schwann Cells/metabolism , Synaptic Vesicles/metabolism , Animals , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuromuscular Junction/metabolism , Neuromuscular Junction/ultrastructure , Phrenic Nerve/physiology , Presynaptic Terminals/ultrastructure , Schwann Cells/ultrastructure , Synaptic Vesicles/ultrastructure
16.
Elife ; 72018 01 31.
Article in English | MEDLINE | ID: mdl-29384476

ABSTRACT

Perisynaptic glial cells respond to neural activity by increasing cytosolic calcium, but the significance of this pathway is unclear. Terminal/perisynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction that respond to nerve-derived substances such as acetylcholine and purines. Here, we provide genetic evidence that activity-induced calcium accumulation in neonatal TPSCs is mediated exclusively by one subtype of metabotropic purinergic receptor. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was more greatly exacerbated by exposure to high potassium than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in TPSCs regulate postsynaptic function and muscle fatigue by regulating perisynaptic potassium.


Subject(s)
Calcium Signaling , Muscle Fatigue , Receptors, Purinergic P2Y1/metabolism , Schwann Cells/physiology , Animals , Mice , Mice, Transgenic , Receptors, Purinergic P2Y1/deficiency
17.
Mol Ther ; 25(6): 1395-1407, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28391962

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7ß1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7ß1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7ß1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.


Subject(s)
Imidazoles/pharmacology , Indoles/pharmacology , Integrins/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Differentiation/drug effects , Cell Line , Disease Models, Animal , Disease Progression , Female , Fibrosis , Humans , Integrins/agonists , Mice , Mice, Inbred mdx , Models, Biological , Muscle Development/drug effects , Muscle Strength , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Regeneration/drug effects , Signal Transduction/drug effects
18.
Front Cell Neurosci ; 10: 276, 2016.
Article in English | MEDLINE | ID: mdl-27990107

ABSTRACT

The failure to transmit neural action potentials (APs) into muscle APs is referred to as neuromuscular transmission failure (NTF). Although synaptic dysfunction occurs in a variety of neuromuscular diseases and impaired neurotransmission contributes to muscle fatigue, direct evaluation of neurotransmission by measurement of successfully transduced muscle APs is difficult due to the subsequent movements produced by muscle. Moreover, the voltage-gated sodium channel inhibitor used to study neurotransmitter release at the adult neuromuscular junction is ineffective in embryonic tissue, making it nearly impossible to precisely measure any aspect of neurotransmission in embryonic lethal mouse mutants. In this study we utilized 3-(N-butylethanimidoyl)-4-hydroxy-2H-chromen-2-one (BHC), previously identified in a small-molecule screen of skeletal muscle myosin inhibitors, to suppress movements without affecting membrane currents. In contrast to previously characterized drugs from this screen such as N-benzyl-p-toluene sulphonamide (BTS), which inhibit skeletal muscle myosin ATPase activity but also block neurotransmission, BHC selectively blocked nerve-evoked muscle contraction without affecting neurotransmitter release. This feature allowed a detailed characterization of neurotransmission in both embryonic and adult mice. In the presence of BHC, neural APs produced by tonic stimulation of the phrenic nerve at rates up to 20 Hz were successfully transmitted into muscle APs. At higher rates of phrenic nerve stimulation, NTF was observed. NTF was intermittent and characterized by successful muscle APs following failed ones, with the percentage of successfully transmitted muscle APs diminishing over time. Nerve stimulation rates that failed to produce NTF in the presence of BHC similarly failed to produce a loss of peak muscle fiber shortening, which was examined using a novel optical method of muscle fatigue, or a loss of peak cytosolic calcium transient intensity, examined in whole populations of muscle cells expressing the genetically-encoded calcium indicator GCaMP3. Most importantly, BHC allowed for the first time a detailed analysis of synaptic transmission, calcium signaling and fatigue in embryonic mice, such as in Vamp2 mutants reported here, that die before or at birth. Together, these studies illustrate the wide utility of BHC in allowing stable measurements of neuromuscular function.

19.
J Neuropathol Exp Neurol ; 75(4): 334-46, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26921370

ABSTRACT

Mutations in peripheral myelin protein 22 (PMP22) result in the most common form of Charcot-Marie-Tooth (CMT) disease, CMT1A. This hereditary peripheral neuropathy is characterized by dysmyelination of peripheral nerves, reduced nerve conduction velocity, and muscle weakness. APMP22 point mutation in L16P (leucine 16 to proline) underlies a form of human CMT1A as well as the Trembler-J mouse model of CMT1A. Homozygote Trembler-J mice (Tr(J)) die early postnatally, fail to make peripheral myelin, and, therefore, are more similar to patients with congenital hypomyelinating neuropathy than those with CMT1A. Because recent studies of inherited neuropathies in humans and mice have demonstrated that dysfunction and degeneration of neuromuscular synapses or junctions (NMJs) often precede impairments in axonal conduction, we examined the structure and function of NMJs in Tr(J)mice. Although synapses appeared to be normally innervated even in end-stage Tr(J)mice, the growth and maturation of the NMJs were altered. In addition, the amplitudes of nerve-evoked muscle endplate potentials were reduced and there was transmission failure during sustained nerve stimulation. These results suggest that the severe congenital hypomyelinating neuropathy that characterizes Tr(J)mice results in structural and functional deficits of the developing NMJ.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Myelin Proteins/genetics , Neuromuscular Junction Diseases/etiology , Neuromuscular Junction Diseases/pathology , Animals , Animals, Newborn , Diaphragm/pathology , Diaphragm/ultrastructure , Electric Stimulation , Evoked Potentials/genetics , Homozygote , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Microscopy, Electron , Neural Conduction/genetics , Neuromuscular Junction/pathology , Neuromuscular Junction/ultrastructure , Neuromuscular Junction Diseases/genetics , Point Mutation/genetics
20.
Front Cell Neurosci ; 9: 436, 2015.
Article in English | MEDLINE | ID: mdl-26617487

ABSTRACT

Genetically encoded Ca(2+) indicators (GECIs) have been used extensively in many body systems to detect Ca(2+) transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca(2+) indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors. We bred several GCaMP3 mice: (1) Wnt1-GCaMP3, all enteric neurons and glia; (2) GFAP-GCaMP3, enteric glia; (3) nNOS-GaMP3, enteric nitrergic neurons; and (4) ChAT-GCaMP3, enteric cholinergic neurons. These mice allowed us to study the behavior of the enteric neurons in the intact colon maintained at a physiological temperature, especially during the colonic migrating motor complex (CMMC), using low power Ca(2+) imaging. In this preliminary study, we observed neuronal and glial cell Ca(2+) transients in specific cells in both the myenteric and submucous plexus in all of the transgenic mice variants. The number of cells that could be simultaneously imaged at low power (100-1000 active cells) through the undissected gut required advanced motion tracking and analysis routines. The pattern of Ca(2+) transients in myenteric neurons showed significant differences in response to spontaneous, oral or anal stimulation. Brief anal elongation or mucosal stimulation, which evokes a CMMC, were the most effective stimuli and elicited a powerful synchronized and prolonged burst of Ca(2+) transients in many myenteric neurons, especially when compared with the same neurons during a spontaneous CMMC. In contrast, oral elongation, which normally inhibits CMMCs, appeared to suppress Ca(2+) transients in some of the neurons active during a spontaneous or an anally evoked CMMC. The activity in glial networks appeared to follow neural activity but continued long after neural activity had waned. With these new tools an unprecedented level of detail can be recorded from the enteric nervous system (ENS) with minimal manipulation of tissue. These techniques can be extended in order to better understand the roles of particular enteric neurons and glia during normal and disordered motility.

SELECTION OF CITATIONS
SEARCH DETAIL
...