Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(10): e0110623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796125

ABSTRACT

IMPORTANCE: African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.


Subject(s)
African Swine Fever Virus , African Swine Fever , Apoptosis , Gene Deletion , Macrophages , Proto-Oncogene Proteins c-bcl-2 , Swine , Viral Proteins , Virulence , Animals , African Swine Fever/virology , African Swine Fever Virus/genetics , Macrophages/virology , Proto-Oncogene Proteins c-bcl-2/deficiency , Proto-Oncogene Proteins c-bcl-2/genetics , Swine/virology , Virulence/genetics , Virus Replication , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Viral Proteins/genetics
2.
mSphere ; 7(6): e0037822, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36317894

ABSTRACT

African swine fever virus (ASFV) causes a highly contagious hemorrhagic disease with case fatality rates approaching 100% in domestic pigs. ASFV is responsible for substantial economic losses, but despite ongoing efforts, no vaccine or antiviral agent is currently available. Attempts to control the spread of ASFV are dependent on early detection, adherence to biosecurity measures, and culling of infected herds. However, an effective antiviral agent may be used in lieu of or in conjunction with a vaccine to effectively curb ASFV outbreaks. The dose-dependent antiviral activities of two amidate prodrugs (compounds 1a and 1b) of O-2-alkylated 3-fluoro-2-(phosphonomethoxy)propyl cytosine [(R)-O-2-alkylated FPMPC] against ASFV isolates of four different genotypes were determined. Both compounds were found to inhibit ASFV progeny virus output by >90% at noncytotoxic concentrations (<25 µM) in primary porcine macrophages. Analysis of viral transcription and viral protein synthesis indicated that these acyclic nucleotide analogues inhibited late gene expression. Interestingly, time-of-addition studies suggest different viral targets of the compounds, which may be attributed to their differing amino acid prodrug moieties. In view of their promising antiviral activity, these nucleotide analogues merit further evaluation as potential prophylactic and/or therapeutic agents against ASFV infection and their antiviral efficacy in vivo should be considered. IMPORTANCE African swine fever virus is a highly contagious hemorrhagic viral disease. Since its transcontinental spread to Georgia in 2007, ASFV has continued to spread across the globe into countries previously without infection. It is responsible for substantial losses in the domestic pig population and presents a significant threat to the global swine industry. Despite ongoing efforts, there are no vaccines currently available; in their absence, antiviral agents may be a viable alternative. The significance of our research is in identifying the pan-genotype antiviral activity of prodrugs of O-2-alkylated 3-fluoro-2-(phosphonomethoxy)propyl cytosine, which will drive further research on the development of these compounds as antivirals against ASFV.


Subject(s)
African Swine Fever Virus , Prodrugs , Swine , Animals , African Swine Fever Virus/genetics , Prodrugs/pharmacology , Nucleosides/pharmacology , Antiviral Agents/pharmacology , Sus scrofa , Genotype , Nucleotides
3.
Antiviral Res ; 208: 105433, 2022 12.
Article in English | MEDLINE | ID: mdl-36252822

ABSTRACT

African swine fever virus (ASFV) causes a haemorrhagic disease affecting wild boar and domestic pigs which can result in morbidity and fatality rates of up to 100%. ASFV is a large double-stranded DNA virus which replicates predominantly in the cell cytoplasm and codes for its replication and transcription machinery. No vaccine is widely available and control depends on early detection, culling of infected herds and adherence to biosecurity measures. In this study the small molecule nucleoside analogue, cyclic cidofovir (cHPMPC), was evaluated for its ability to inhibit replication of four different ASFV genotypes in primary porcine macrophages. Time of addition studies demonstrated that cHPMPC effectively inhibits ASFV replication and late gene expression when added pre-infection or early post-infection but not when added at late times, suggesting the drug target may be the virus DNA polymerase, or the RNA polymerase involved in late transcription. Oral administration of cHPMPC delayed onset of clinical signs and significantly reduced viral titres in blood and tissues of treated pigs. These results indicate that cHPMPC is a promising compound for further development to control ASFV outbreaks.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/drug therapy , African Swine Fever/prevention & control , Nucleosides/pharmacology , Nucleosides/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication , Sus scrofa
4.
Virulence ; 12(1): 2946-2956, 2021 12.
Article in English | MEDLINE | ID: mdl-34793280

ABSTRACT

The struggle to control the COVID-19 pandemic is made challenging by the emergence of virulent SARS-CoV-2 variants. To gain insight into their replication dynamics, emergent Alpha (A), Beta (B) and Delta (D) SARS-CoV-2 variants were assessed for their infection performance in single variant- and co-infections. The effectiveness of thapsigargin (TG), a recently discovered broad-spectrum antiviral, against these variants was also examined. Of the 3 viruses, the D variant exhibited the highest replication rate and was most able to spread to in-contact cells; its replication rate at 24 h post-infection (hpi) based on progeny viral RNA production was over 4 times that of variant A and 9 times more than the B variant. In co-infections, the D variant boosted the replication of its co-infected partners at the expense of its own initial performance. Furthermore, co-infection with AD or AB combination conferred replication synergy where total progeny (RNA) output was greater than the sum of corresponding single-variant infections. All variants were highly sensitive to TG inhibition. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every combination (AB, AD, BD variants) of co-infection at greater than 95% (relative to controls) at 72 hpi. Likewise, TG was effective in inhibiting each variant in active preexisting infection. In conclusion, against the current backdrop of the dominant D variant that could be further complicated by co-infection synergy with new variants, the growing list of viruses susceptible to TG, a promising host-centric antiviral, now includes a spectrum of contemporary SARS-CoV-2 viruses.


Subject(s)
COVID-19 Drug Treatment , Coinfection , SARS-CoV-2 , Thapsigargin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Thapsigargin/therapeutic use
5.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33546185

ABSTRACT

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus OC43, Human/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Cells, Cultured , Coronavirus OC43, Human/physiology , Endoplasmic Reticulum Stress , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Microbial Sensitivity Tests , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/physiology , Ribavirin/pharmacology , SARS-CoV-2/physiology , Thapsigargin/therapeutic use , Virus Replication/drug effects
6.
Viruses ; 12(10)2020 09 27.
Article in English | MEDLINE | ID: mdl-32992478

ABSTRACT

Influenza A virus is a major global pathogen of humans, and there is an unmet need for effective antivirals. Current antivirals against influenza A virus directly target the virus and are vulnerable to mutational resistance. Harnessing an effective host antiviral response is an attractive alternative. We show that brief exposure to low, non-toxic doses of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, promptly elicits an extended antiviral state that dramatically blocks influenza A virus production. Crucially, oral administration of TG protected mice against lethal virus infection and reduced virus titres in the lungs of treated mice. TG-induced ER stress unfolded protein response appears as a key driver responsible for activating a spectrum of host antiviral defences that include an enhanced type I/III interferon response. Our findings suggest that TG is potentially a viable host-centric antiviral for the treatment of influenza A virus infection without the inherent problem of drug resistance.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H3N8 Subtype/growth & development , Thapsigargin/pharmacology , Virus Replication/drug effects , Animals , Cell Line , Chick Embryo , Chlorocebus aethiops , Dogs , Endoplasmic Reticulum Stress/drug effects , Female , Host-Pathogen Interactions/drug effects , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Influenza, Human/drug therapy , Interferon Type I/drug effects , Interferon Type I/immunology , Interferons/drug effects , Interferons/immunology , Mice , Mice, Inbred BALB C , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Swine , Unfolded Protein Response/drug effects , Vero Cells , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL
...