Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Commun ; 14(1): 8048, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052854

ABSTRACT

CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , RNA, Guide, CRISPR-Cas Systems , Immunotherapy, Adoptive , T-Lymphocytes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Tumor Microenvironment
2.
Nat Commun ; 12(1): 6218, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711820

ABSTRACT

Cytotoxic chemotherapeutics primarily function through DNA damage-induced tumor cell apoptosis, although the inflammation provoked by these agents can stimulate anti-cancer immune responses. The mechanisms that control these distinct effects and limit immunogenic responses to DNA-damage mediated cell death in vivo are currently unclear. Using a mouse model of BCR-ABL+ B-cell acute lymphoblastic leukemia, we show that chemotherapy-induced anti-cancer immunity is suppressed by the tumor microenvironment through production of the cytokine IL-6. The chemotherapeutic doxorubicin is curative in IL-6-deficient mice through the induction of CD8+ T-cell-mediated anti-cancer responses, while moderately extending lifespan in wild type tumor-bearing mice. We also show that IL-6 suppresses the effectiveness of immune-checkpoint inhibition with anti-PD-L1 blockade. Our results suggest that IL-6 is a key regulator of anti-cancer immune responses induced by genotoxic stress and that its inhibition can switch cancer cell clearance from primarily apoptotic to immunogenic, promoting and maintaining durable anti-tumor immune responses.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Interleukin-6/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Microenvironment , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , DNA Damage/drug effects , Disease Models, Animal , Humans , Interleukin-6/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology
3.
NPJ Breast Cancer ; 7(1): 51, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980863

ABSTRACT

Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy.

4.
Mol Cancer Res ; 18(11): 1685-1698, 2020 11.
Article in English | MEDLINE | ID: mdl-32753473

ABSTRACT

Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant in vitro model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/genetics , Female , Humans
5.
Oncotarget ; 9(21): 15480-15497, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29643987

ABSTRACT

Multiplexed small molecule inhibitors covalently bound to Sepharose beads (MIBs) were used to capture functional kinases in luminal, HER2-enriched and triple negative (basal-like and claudin-low) breast cancer cell lines and tumors. Kinase MIB-binding profiles at baseline without perturbation proteomically distinguished the four breast cancer subtypes. Understudied kinases, whose disease associations and pharmacology are generally unexplored, were highly represented in MIB-binding taxonomies and are integrated into signaling subnetworks with kinases that have been previously well characterized in breast cancer. Computationally it was possible to define subtypes using profiles of less than 50 of the more than 300 kinases bound to MIBs that included understudied as well as metabolic and lipid kinases. Furthermore, analysis of MIB-binding profiles established potential functional annotations for these understudied kinases. Thus, comprehensive MIBs-based capture of kinases provides a unique proteomics-based method for integration of poorly characterized kinases of the understudied kinome into functional subnetworks in breast cancer cells and tumors that is not possible using genomic strategies. The MIB-binding profiles readily defined subtype-selective differential adaptive kinome reprogramming in response to targeted kinase inhibition, demonstrating how MIB profiles can be used in determining dynamic kinome changes that result in subtype selective phenotypic state changes.

7.
Cancer Discov ; 7(3): 302-321, 2017 03.
Article in English | MEDLINE | ID: mdl-28108460

ABSTRACT

Targeting the dysregulated BRAF-MEK-ERK pathway in cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRAF and MEK, resistance develops often involving nongenomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in patients with triple-negative breast cancer (TNBC) induced dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTK) comparing tumor samples before and after one week of treatment. In preclinical models, MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation, and p300 that drives transcriptional adaptation. Inhibition of the P-TEFb-associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts, and syngeneic mouse TNBC models. Pharmacologic targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance.Significance: Widespread transcriptional adaptation to pharmacologic MEK inhibition was observed in TNBC patient tumors. In preclinical models, MEK inhibition induces dramatic genome-wide modulation of chromatin, in the form of de novo enhancer formation and enhancer remodeling. Pharmacologic targeting of P-TEFb complex members at enhancers is an effective strategy to durably inhibit such adaptation. Cancer Discov; 7(3); 302-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.


Subject(s)
Antineoplastic Agents/therapeutic use , Enhancer Elements, Genetic , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Positive Transcriptional Elongation Factor B/antagonists & inhibitors , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Azepines/therapeutic use , Cell Cycle Proteins , Cell Line, Tumor , DNA Methylation , Discoidin Domain Receptor 1/genetics , Drug Resistance, Neoplasm , Drug Synergism , Epigenesis, Genetic , Female , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Mice, Inbred BALB C , Mice, SCID , Molecular Targeted Therapy , Nuclear Proteins/antagonists & inhibitors , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Pyridones/pharmacology , Pyrimidinones/pharmacology , RNA Interference , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/therapeutic use , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
J Cell Physiol ; 232(1): 53-60, 2017 01.
Article in English | MEDLINE | ID: mdl-27186656

ABSTRACT

Protein kinases are highly tractable targets for the treatment of many cancers including breast cancer, due to their essential role in tumor cell proliferation and survival. Sequencing of the breast cancer genome and transcriptome has defined breast cancer as a heterogeneous disease that is classified into five molecular subtypes: luminal A, luminal B, HER2-enriched, basal-like, and claudin-low. Each subtype displays a unique expression profile of protein kinases that can be targeted by small molecule kinase inhibitors or biologics. An understanding of genomic changes, including mutations or copy number variations, for specific protein kinases and dependencies on kinases across breast cancer subtypes is allowing for a more rational design of targeted breast cancer therapies. While specific kinase inhibitors have had success in the clinic, including the CDK4/6 inhibitor palbociclib in combination with aromatase inhibitors in luminal breast cancer, patients often become resistant to treatment. An understanding of the mechanisms allowing cells to bypass targeted kinase inhibition has led to the development of combination therapies that are more durable in pre-clinical studies. However, the heterogeneity of resistance mechanisms and rapid adaptability of the kinome through feedback regulation greatly inhibit the long-term efficacy of combination kinase inhibitor therapies. It is becoming apparent that epigenetic inhibitors, such as HDAC and BET bromodomain inhibitors can block the transcriptional adaptability of tumor cells to kinase inhibitors and prevent the onset of resistance. Such novel combination therapies are currently showing promise in preclinical studies to markedly increase the durability of kinase inhibitors in breast cancer. J. Cell. Physiol. 232: 53-60, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA Copy Number Variations/genetics , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Animals , Aromatase Inhibitors/pharmacology , Breast Neoplasms/metabolism , Female , Humans , Receptor, ErbB-2/genetics
9.
J Cell Physiol ; 227(6): 2660-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21882192

ABSTRACT

A direct current (DC) endogenous electric field (EF) is induced in the wound following skin injury. It is potentially implicated in the wound healing process by attracting cells and altering their phenotypes as indicated by the response to an EF of keratinocytes cultured as individual cells. To better define the signalization induced by a direct current electric field (DCEF) in human keratinocytes, we took advantage of an in vitro model more representative of the in vivo situation since it promotes cell-cell interactions and stratification. Human keratinocytes were grown into colonies. Their exposure to a DCEF of physiological intensity induced an increase of intracellular calcium. This variation of intracellular calcium resulted from an extracellular calcium influx and was mediated, at least in part, by the L-type voltage-gated calcium channel. The increase in intracellular calcium in response to a DCEF was however not observed in all the cells composing the colonies. The intracellular calcium increase was only detected in keratinocytes that didn't express involucrin, a marker of differentiated cells. These results indicate that DCEF is able to induce a specific calcium response in poorly differentiated keratinocytes. This study brings a new perspective for the understanding of the signaling mechanism of endogenous EF in reepithelialization, a critical process during skin wound healing.


Subject(s)
Calcium/metabolism , Cell Differentiation , Keratinocytes/metabolism , Wound Healing , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Electric Stimulation , Humans , Keratinocytes/drug effects , Phosphodiesterase Inhibitors/pharmacology , Protein Precursors/metabolism , Signal Transduction , Time Factors , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism , Wound Healing/drug effects
10.
Adv Wound Care (New Rochelle) ; 1(2): 81-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-24527285

ABSTRACT

BACKGROUND: After human epidermis wounding, transepithelial potential (TEP) present in nonlesional epidermis decreases and induces an endogenous direct current epithelial electric field (EEF) that could be implicated in the wound re-epithelialization. Some studies suggest that exogenous electric stimulation of wounds can stimulate healing, although the mechanisms remain to be determined. THE PROBLEM: Little is known concerning the exact action of the EEF during healing. The mechanism responsible for TEP and EEF is unknown due to the lack of an in vitro model to study this phenomenon. BASIC SCIENCE ADVANCES: We carried out studies by using a wound created in a human tissue-engineered skin and determined that TEP undergoes ascending and decreasing phases during the epithelium formation. The in vitro TEP measurements over time in the wound were corroborated with histological changes and with in vivo TEP variations during porcine skin wound healing. The expression of a crucial element implicated in Na+ transport, Na+/K+ ATPase pumps, was also evaluated at the same time points during the re-epithelialization process. The ascending and decreasing TEP values were correlated with changes in the expression of these pumps. The distribution of Na+/K+ ATPase pumps also varied according to epidermal differentiation. Further, inhibition of the pump activity induced a significant decrease of the TEP and of the re-epithelization rate. CLINICAL CARE RELEVANCE: A better comprehension of the role of EEF could have important future medical applications regarding the treatment of chronic wound healing. CONCLUSION: This study brings a new perspective to understand the formation and restoration of TEP during the cutaneous wound healing process.

11.
Exp Eye Res ; 93(4): 371-81, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21600897

ABSTRACT

Cataract affects 1 in 6 Americans over the age of 40, and represents a global health problem. Mature onset cataract is associated with the aggregation of partially unfolded or damaged proteins in the lens, which accumulate as an individual ages. Currently, surgery is the primary effective treatment for cataract. As an alternative preventive approach, small molecules have been suggested as potential therapeutic agents. In this work, we study the effect of sodium citrate on the stability of Human γD Crystallin (HγD-Crys), a structural protein of the eye lens, and two cataract-related mutants, L5S HγD-Crys and I90F HγD-Crys. In equilibrium unfolding-refolding studies, the presence of 250 mM sodium citrate increased the transition midpoint of the N-terminal domain (N-td) of WT HγD-Crys and L5S HγD-Crys by 0.3 M GuHCl, the C-terminal domain (C-td) by 0.6 M GuHCl, and the single transition of I90F HγD-Crys by 0.4 M GuHCl. In kinetic unfolding reactions, sodium citrate stabilization effect was observed only for the mutant I90F HγD-Crys. In the presence of citrate, a kinetic unfolding intermediate of I90F HγD-Crys was observed, which was not populated in the absence of citrate. The rates of aggregation were measured using solution turbidity. Sodium citrate demonstrated negligible effect on rate of aggregation of WT HγD-Crys, but considerably slowed the rate of aggregation of both L5S HγD-Crys and I90F HγD-Crys. The presence of sodium citrate dramatically slowed refolding of WT HγD-Crys and I90F HγD-Crys, but had a significantly smaller effect on the refolding of L5S HγD-Crys. The differential stabilizing effect of sodium citrate suggests that the ion is binding to a partially unfolded conformation of the C-td, but a solution-based Hofmeister effect cannot be eliminated as a possible explanation for the effects observed. These results indicate that assessment of potential anti-cataract agents needs to include effects on the unfolding and aggregation pathways, as well as the native state.


Subject(s)
Citrates/pharmacology , Lens, Crystalline/chemistry , Protein Denaturation/drug effects , Protein Unfolding/drug effects , gamma-Crystallins/chemistry , Cataract/metabolism , Humans , Protein Folding , Sodium Citrate , Spectrometry, Fluorescence
12.
Bioelectromagnetics ; 32(8): 620-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21544842

ABSTRACT

Extremely low frequency (ELF, <300 Hz) magnetic fields (MF) have been reported to modulate cognitive performance in humans. However, little research exists with MF exposures comparable to the highest levels experienced in occupations like power line workers and industrial welders. This research aims to evaluate the impact of a 60 Hz, 3 mT MF on human cognitive performance. Ninety-nine participants completed the double-blind protocol, performing a selection of psychometric tests under two consecutive MF exposure conditions dictated by assignment to one of three groups (sham/sham, MF exposure/sham, or sham/MF exposure). Data were analyzed using a 3 × 2 mixed model analysis of variance. Performance between repetitions improved in 11 of 15 psychometric parameters (practice effect). A significant interaction effect on the digit span forward test (F = 5.21, P < 0.05) revealed an absence of practice effects for both exposure groups but not the control group. This memory test indicates MF-induced abolition of the improvement associated with practice. Overall, this study does not establish any clear MF effect on human cognition. It is speculated that an ELF MF may interfere with the neuropsychological processes responsible for this short-term learning effect supported by brain synaptic plasticity.


Subject(s)
Cognition/radiation effects , Electromagnetic Fields/adverse effects , Magnetic Fields/adverse effects , Occupational Exposure/adverse effects , Psychological Tests , Task Performance and Analysis , Adult , Analysis of Variance , Brain/physiology , Brain/radiation effects , Cognition/physiology , Double-Blind Method , Female , Humans , Male , Middle Aged , Reaction Time/physiology , Reaction Time/radiation effects
13.
Protein Sci ; 20(1): 30-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20981710

ABSTRACT

Chaperonins assist in the folding of nascent and misfolded proteins, though the mechanism of folding within the lumen of the chaperonin remains poorly understood. The archeal chaperonin from Methanococcus marapaludis, Mm-Cpn, shares the eightfold double barrel structure with other group II chaperonins, including the eukaryotic TRiC/CCT, required for actin and tubulin folding. However, Mm-Cpn is composed of a single species subunit, similar to group I chaperonin GroEL, rather than the eight subunit species needed for TRiC/CCT. Features of the ß-sheet fold have been identified as sites of recognition by group II chaperonins. The crystallins, the major components of the vertebrate eye lens, are ß-sheet proteins with two homologous Greek key domains. During refolding in vitro a partially folded intermediate is populated, and partitions between productive folding and off-pathway aggregation. We report here that in the presence of physiological concentrations of ATP, Mm-Cpn suppressed the aggregation of HγD-Crys by binding the partially folded intermediate. The complex was sufficiently stable to permit recovery by size exclusion chromatography. In the presence of ATP, Mm-Cpn promoted the refolding of the HγD-Crys intermediates to the native state. The ability of Mm-Cpn to bind and refold a human ß-sheet protein suggests that Mm-Cpn may be useful as a simplified model for the substrate recognition mechanism of TRiC/CCT.


Subject(s)
Bacterial Proteins/metabolism , Group II Chaperonins/metabolism , Methanococcus , gamma-Crystallins/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Group II Chaperonins/chemistry , Humans , Protein Binding , Protein Refolding , gamma-Crystallins/chemistry
14.
J Biol Chem ; 285(36): 27958-66, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20573955

ABSTRACT

Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins.


Subject(s)
Group II Chaperonins/chemistry , Protein Folding , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Group II Chaperonins/metabolism , Hydrolysis , Methanococcus , Models, Molecular , Protein Structure, Tertiary
15.
Tissue Eng Part A ; 16(10): 3055-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486795

ABSTRACT

Normal human epidermis possesses a transepithelial potential (TEP) that varies in different parts of the body (10­60mV). The role of TEP in normal epidermis is not yet identified; but after skin injury, TEP disruption induces an endogenous direct current electric field (100­200mV/mm) directed toward the middle of the wound. This endogenous electric field could be implicated in the wound healing process by attracting cells, thus facilitating reepithelialization. However, little is known on the restoration of the TEP during human skin formation and wound healing. In this study, the variations in TEP and Na+/K+ ATPase pump expression during the formation of the epithelium were investigated in vitro using human tissue-engineered human skin (TES) reconstituted by tissue engineering and in vivo with a porcine wound healing model. Results showed that TEP undergoes ascending and decreasing phases during epithelium formation in TES as well as during wound repair within TES. Similar results were observed during in vivo reepithelialization of wounds. The ascending and decreasing TEP values were correlated with changes in the expression of Na+/K+ ATPase pump. The distribution of Na+/K+ ATPase pumps also varied according to epidermal differentiation. Taken together, these results suggest that the variations in the expression of Na+/K+ ATPase pump over time and across epidermis would be a determinant parameter of the TEP, dictating a cationic transport during the formation and restoration of the epidermis. Therefore, this study brings a new perspective to understand the formation and restoration of TEP during the cutaneous wound healing process. This might have important future medical applications regarding the treatment of chronic wound healing.


Subject(s)
Epidermis/metabolism , Membrane Potentials/physiology , Skin/cytology , Skin/metabolism , Tissue Engineering/methods , Wound Healing/physiology , Cells, Cultured , Fluorescent Antibody Technique , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
16.
Invest Ophthalmol Vis Sci ; 51(2): 672-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19684009

ABSTRACT

PURPOSE: Mature-onset cataract results from the formation of light-scattering aggregates of lens crystallins. Although oxidative or mutational damage may be a prerequisite, little is known of the initiation or nucleation of these aggregated states. In mice carrying mutations in gamma-crystallin genes, a truncated form of gamma-crystallin formed intranuclear filamentous inclusions within lens fiber cells. Previous studies have shown that bovine crystallins and human gammaD-crystallin form amyloid fibrils under denaturing conditions in vitro. The amyloid fibril formation of human gammaC-crystallin (HgammaC-Crys) induced by low pH, together with characterization of a partially unfolded intermediate in the process were investigated. METHODS: HgammaC-Crys was expressed and purified from Escherichia coli. Partially unfolded intermediates were detected by tryptophan fluorescence spectroscopy and UV resonance Raman spectroscopy. The aggregation into amyloid fibrils was monitored by solution turbidity and fluorescence assay. The morphology of aggregates was characterized using transmission electron microscopy (TEM). Secondary structure of the peptides in their fibrillar state was characterized using Fourier transform infrared spectroscopy (FTIR). RESULTS: The structure of HgammaC-Crys was perturbed at low pH. Partially unfolded intermediates were detected when solution pH was lowered to pH 3. At pH 3, HgammaC-Crys aggregated into amyloid fibrils. The kinetics and extent of the reaction was dependent on protein concentration, pH, and temperature. TEM images of aggregates revealed aggregation stages from short to long fibrils and from long fibrils to light-scattering fibril networks. FTIR spectroscopy confirmed the cross-beta character of the secondary structure of these fibrils. CONCLUSIONS: HgammaC-Crys formed amyloid fibrils on incubation at low pH via a partially unfolded intermediate. This process could contribute to the early stages of the formation of light-scattering species in the eye lens.


Subject(s)
Amyloid/chemistry , gamma-Crystallins/chemistry , Amyloid/ultrastructure , Escherichia coli/genetics , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Protein Folding , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Tryptophan/chemistry , gamma-Crystallins/genetics
17.
Mol Cell Biol ; 29(21): 5872-88, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19703994

ABSTRACT

GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD(+) biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD(+) turnover, which makes NAD(+) modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD(+) and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD(+) repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.


Subject(s)
Cyanides/therapeutic use , Guanidines/therapeutic use , NAD/biosynthesis , Neoplasms/drug therapy , Neoplasms/enzymology , Nicotinamide Phosphoribosyltransferase/deficiency , Animals , Cell Death/drug effects , Cell Line, Tumor , Cyanides/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Guanidines/pharmacology , Humans , Mice , Models, Biological , Models, Molecular , Niacin/administration & dosage , Niacin/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Phosphorylation/drug effects , Ribose/metabolism , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
18.
Anticancer Drugs ; 20(5): 346-54, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19369827

ABSTRACT

GMX1778 was recently shown to function as a potent inhibitor of nicotinamide phosphoribosyl transferase. To translate the discovery of GMX1778 mechanism of action into optimal clinical use of its intravenously administered prodrug, GMX1777, the efficacy of GMX1777 was evaluated in xenograft models and the pharmacokinetic profile of GMX1778 and its effect on nicotinamide adenine dinucleotide cellular levels was measured by liquid chromatography/mass spectrometry. Consistent with the requirement for a prolonged exposure for cytotoxicity in vitro, a dose of 75 mg/kg of GMX1777 administered as two bolus intravenous injections in 1 day were not effective at reducing the growth of multiple myeloma (IM-9) tumors, whereas the same dose of GMX1777 administered over a 24 h intravenous infusion caused tumor regression in the IM-9 model, a small-cell lung cancer (SHP-77) model, and a colon carcinoma (HCT-116) model. A 72 h continuous intravenous infusion of GMX1777 was also effective in the IM-9 model, but was associated with a smaller therapeutic index. GMX1777 at a dose of 75 mg/kg administered over a 24 h intravenous infusion produced GMX1778 steady-state plasma levels of approximately 1 microg/ml and caused nicotinamide adenine dinucleotide levels to decrease significantly in tumors. Consistent with the GMX1778 mechanism of action, nicotinic acid protected mice treated with a lethal dose of GMX1777. These data support the design of an open-label, dose-escalation trial, in which patients with refractory solid tumors and lymphomas receive 24 h infusions of GMX1777 as a single agent in 3-week cycles. Furthermore, these results indicate that nicotinic acid is a potent antidote to treat GMX1777 overdose.


Subject(s)
Antineoplastic Agents/therapeutic use , Cytokines/antagonists & inhibitors , Guanidines/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Prodrugs/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cell Line, Tumor/transplantation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Cyanides/administration & dosage , Cyanides/pharmacology , Cyanides/therapeutic use , Drug Screening Assays, Antitumor , Female , Guanidines/administration & dosage , Guanidines/pharmacokinetics , Guanidines/pharmacology , Humans , Infusions, Intravenous , Injections, Intravenous , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , NAD/metabolism , Niacin/metabolism , Niacinamide/metabolism , Xenograft Model Antitumor Assays
19.
Proc Natl Acad Sci U S A ; 104(49): 19512-7, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-18040043

ABSTRACT

Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , Animals , Boronic Acids/pharmacology , Bortezomib , Cell Line, Tumor , Cysteine Proteinase Inhibitors/pharmacology , Humans , Indoles , Melanoma/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasm Proteins/metabolism , Proteasome Inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazines/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/antagonists & inhibitors , bcl-2 Homologous Antagonist-Killer Protein/metabolism
20.
Bioelectromagnetics ; 26(5): 357-66, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15887251

ABSTRACT

The goal of this study was to address some of the factors that contribute to the human ability to detect the presence of weak electric fields generated by direct current (DC) and alternating current (AC) sources. An exposure chamber allowed us to expose a limited surface of the body (forearm and hand) to DC fields of up to 65 kV/m and AC fields up to a maximum of 35 kV/m (frequency 60 Hz). Perception was examined using a staircase procedure and a rating procedure derived from signal detection theory. Sixteen subjects participated in the experiments, and none detected the local DC fields. In contrast, 9/16 subjects were sensitive to local AC electric fields, although detection thresholds (index of sensitivity, d' = 1.0) were widely variable between subjects. When regional exposure was limited to the dorsal forearm, performance was similar to that seen when the forearm and hand were exposed. In contrast, subjects did not reliably detect the AC electric fields when exposure was limited to the hand (either hairy or glabrous skin), although a minority of subjects (3/9) showed some evidence of detecting fields presented to the glabrous palm. Subjects were unable to detect AC electric fields when the hair was removed from the forearm and hand, suggesting that the evoked sensation is mainly dependent on movement of hair located in the exposed region.


Subject(s)
Arm/physiology , Differential Threshold/physiology , Electric Stimulation/methods , Electromagnetic Fields , Hair/physiology , Sensation/physiology , Adult , Arm/radiation effects , Differential Threshold/radiation effects , Dose-Response Relationship, Radiation , Female , Hair/radiation effects , Humans , Male , Perception/physiology , Perception/radiation effects , Radiation Dosage , Sensation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...