Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e15023, 2023.
Article in English | MEDLINE | ID: mdl-37151292

ABSTRACT

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Subject(s)
Coral Reefs , Dinoflagellida , Genetic Variation , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Consensus , Anthozoa , Symbiosis
3.
Sci Rep ; 11(1): 22554, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799589

ABSTRACT

Chimerism is a coalescence of conspecific genotypes. Although common in nature, fundamental knowledge, such as the spatial distribution of the genotypes within chimeras, is lacking. Hence, we investigated the spatial distribution of conspecific genotypes within the brooding coral Stylophora pistillata, a common species throughout the Indo-Pacific and Red Sea. From eight gravid colonies, we collected planula larvae that settled in aggregates, forming 2-3 partner chimeras. Coral chimeras grew in situ for up to 25 months. Nine chimeras (8 kin, 1 non-related genotypes) were sectioned into 7-17 fragments (6-26 polyps/fragment), and genotyped using eight microsatellite loci. The discrimination power of each microsatellite-locus was evaluated with 330 'artificial chimeras,' made by mixing DNA from three different S. pistillata genotypes in pairwise combinations. In 68% of 'artificial chimeras,' the second genotype was detected if it constituted 5-30% of the chimera. Analyses of S. pistillata chimeras revealed that: (a) chimerism is a long-term state; (b) conspecifics were intermixed (not separate from one another); (c) disproportionate distribution of the conspecifics occurred; (d) cryptic chimerism (chimerism not detected via a given microsatellite) existed, alluding to the underestimation of chimerism in nature. Mixed chimerism may affect ecological/physiological outcomes for a chimera, especially in clonal organisms, and challenges the concept of individuality, affecting our understanding of the unit of selection.


Subject(s)
Anthozoa/genetics , Chimerism , Microsatellite Repeats , Animals , Anthozoa/growth & development , Evolution, Molecular , Genotype
4.
Science ; 373(6551): 170-171, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244404

Subject(s)
Cultural Diversity
5.
Front Physiol ; 11: 566968, 2020.
Article in English | MEDLINE | ID: mdl-33071821

ABSTRACT

Corals' obligate association with unicellular dinoflagellates, family Symbiodiniaceae form the foundation of coral reefs. For nearly a century, researchers have delved into understanding the coral-algal mutualism from multiple levels of resolution and perspectives, and the questions and scope have evolved with each iteration of new techniques. Advances in genetic technologies not only aided in distinguishing between the multitude of Symbiodiniaceae but also illuminated the existence and diversity of other organisms constituting the coral microbiome. The coral therefore is a meta-organism, often referred to as the coral holobiont. In this review, we address the importance of including a holistic perspective to understanding the coral holobiont. We also discuss the ramifications of how different genotypic combinations of the coral consortium affect the holobiont entity. We highlight the paucity of data on most of the coral microbiome. Using Symbiodiniaceae data, we present evidence that the holobiont properties are not necessarily the sum of its parts. We then discuss the consequences of the holobiont attributes to the fitness of the holobiont and the myriad of organisms that contribute to it. Considering the complexity of host-symbiont genotypic combinations will aid in our understanding of coral resilience, robustness, acclimation, and/or adaptation in the face of environmental change and increasing perturbations.

6.
Front Microbiol ; 11: 1272, 2020.
Article in English | MEDLINE | ID: mdl-32595627

ABSTRACT

The bacterial microbiome is an essential component of many corals, although knowledge of the microbiomes in scleractinian corals far exceeds that for octocorals. This study characterized the bacterial communities present in shallow water Caribbean gorgonian octocorals over time and space, in addition to determining the bacterial assemblages in gorgonians exposed to environmental perturbations. We found that seven shallow water Caribbean gorgonian species maintained distinct microbiomes and predominantly harbored two bacterial genera, Mycoplasma and Endozoicomonas. Representatives of these taxa accounted for over 70% of the sequences recovered, made up the three most common operational taxonomic units (OTUs), and were present in most of the gorgonian species. Gorgonian species sampled in different seasons and/or in different years, exhibited significant shifts in the abundances of these bacterial OTUs, though there were few changes to overall bacterial diversity, or to the specific OTUs present. These shifts had minimal impact on the relative abundance of inferred functional proteins within the gorgonian corals. Sequences identified as Escherichia were ubiquitous in gorgonian colonies sampled from a lagoon but not in colonies sampled from a back reef. Exposure to increased temperature and/or ultraviolet radiation (UVR) or nutrient enrichment led to few significant changes in the gorgonian coral microbiomes. While there were some shifts in the abundance of the prevalent bacteria, more commonly observed was "microbial switching" between different OTUs identified within the same bacterial genus. The relative stability of gorgonian coral bacterial microbiome may potentially explain some of the resistance and resilience of Caribbean gorgonian corals against changing environmental conditions.

7.
Mar Pollut Bull ; 141: 621-628, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955777

ABSTRACT

Corals inhabit oligotrophic waters, thriving amidst limited nutrients such as nitrogen and phosphorous. When nutrient levels increase, usually due to human activity, the symbiosis of dinoflagellates (family Symbiodiniaceae) with scleractinian corals can break down. Although gorgonian corals dominate many Caribbean reefs, the impact of enrichment on them and their algae is understudied. We exposed two gorgonian species, Pseudoplexaura porosa and Eunicea tourneforti, to elevated concentrations of either ammonium (10 µM or 50 µM) or phosphate (4 µM). Enrichment with 10 µM ammonium increased chlorophyll content and algal density in both species, whereas the host biochemical composition was unaffected. Exposure to 50 µM ammonium only reduced the quantum yield in P. porosa and mitotic indices in both species. Conversely, algal carbon and nitrogen content within E. tourneforti increased with 4 µM phosphate exposure. These gorgonian species coped with short-term nutrient enrichment, furthering our understanding of the success of Caribbean gorgonians.


Subject(s)
Anthozoa/physiology , Dinoflagellida/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Ammonia/metabolism , Animals , Carbon , Caribbean Region , Chlorophyll , Nutrients/metabolism , Phosphates/metabolism , Symbiosis
8.
PLoS One ; 12(2): e0171032, 2017.
Article in English | MEDLINE | ID: mdl-28152002

ABSTRACT

Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host and consequently holobiont parameters may partially explain their persistence on reefs faced with climate change.


Subject(s)
Anthozoa/physiology , Dinoflagellida/physiology , Acclimatization/physiology , Animals , Anthozoa/chemistry , Caribbean Region , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Dinoflagellida/genetics , Enzymes/metabolism , Genotype , Mexico , Seawater , Symbiosis/physiology , Temperature
9.
PLoS One ; 9(9): e106419, 2014.
Article in English | MEDLINE | ID: mdl-25192405

ABSTRACT

Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will aid in deciphering why gorgonian corals dominate many Caribbean reefs.


Subject(s)
Anthozoa/physiology , Photosynthesis , Symbiosis , Animals , Anthozoa/classification , Biodiversity , Caribbean Region , Chlorophyll/metabolism , Microsatellite Repeats , Oxygen/metabolism , Photochemical Processes , Phylogeny , Population Density
10.
PLoS One ; 8(3): e59596, 2013.
Article in English | MEDLINE | ID: mdl-23555721

ABSTRACT

In obligate symbioses, the host's survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.


Subject(s)
Adaptation, Physiological , Anthozoa/physiology , Symbiosis , Animals , Anthozoa/genetics , Dinoflagellida/physiology , Environment , Time Factors
11.
PLoS One ; 6(10): e26914, 2011.
Article in English | MEDLINE | ID: mdl-22046408

ABSTRACT

Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.


Subject(s)
Coral Reefs , Gene Expression Profiling , Hot Temperature/adverse effects , Light/adverse effects , Stress, Physiological/genetics , Actins/genetics , Animals , Biomarkers , Gene Expression Regulation , Heat-Shock Proteins/genetics
12.
Mol Immunol ; 47(11-12): 2083-93, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20452026

ABSTRACT

In botryllid ascidians, allogeneic contacts between histoincompatible colonies lead to inflammatory rejection responses, which eventually separate the interacting colonies. In order to elucidate the molecular background of allogeneic rejection in the colonial ascidian Botryllus schlosseri, we performed microarray assays verified by qPCR, and employed bioinformatic analyses of the results, revealing disparate transcription profiles of the rejecting partners. While only minor expression changes were documented during rejection when both interacting genotypes were pooled together, analyses performed on each genotype separately portrayed disparate transcriptome responses. Allogeneic interacting genotypes that developed the morphological markers of rejection (points of rejection; PORs), termed 'rejected' genotypes, showed transcription inhibition of key functional gene groups, including protein biosynthesis, cell structure and motility and stress response genes. In contrast, the allogeneic partners that did not show PORs, termed 'rejecting' genotypes, showed minor expression changes that were different from those of the 'rejected' genotypes. This data demonstrates that the observed morphological changes in the 'rejected' genotypes are not due to active transcriptional response to the immune challenge but reflect transcription inhibition of response elements. Based on the morphological and molecular outcomes we suggest that the 'rejected' colony activates an injurious self-destructive mechanism in order to disconnect itself from its histoincompatible neighboring colony.


Subject(s)
Gene Expression Profiling , Urochordata/immunology , Animals , Immunity, Innate , Polymerase Chain Reaction
13.
Vision Res ; 49(19): 2371-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19622369

ABSTRACT

Polarization sensitivity provides animals with information not available in the intensity or spectral domains. We examined the polarotaxis reactions in the epiplanktonic copepod Pontella karachiensis. Polarotaxis reactions were intensity dependent. At intensities corresponding to ambient daylight, P. karachiensis showed an attraction to a polarized light field; while at low intensities, corresponding to nighttime illumination, it showed negative polarotaxis. P. karachiensis's eye contained two classes of photoreceptors, each class with microvilli at orthogonal orientation to the other. P. karachiensis' eye structure can provide information regarding the polarization percentage but is not sufficient to calculate the exact e-vector orientation. The threshold for polarotoxisis response was 20-30%. Animals responded similarly to horizontal and vertical polarization; and also showed negative phototaxis, affected by light polarization. Results suggest that P. karachiensis responds to polarized light analogously to changes in brightness. The dynamic pattern of polarotaxis responses suggests that polarization sensitivity may enable P. karachiensis to detect other planktonic animals.


Subject(s)
Copepoda/physiology , Motor Activity/physiology , Animals , Behavior, Animal/physiology , Copepoda/anatomy & histology , Eye/anatomy & histology , Female , Male , Orientation/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Sensory Thresholds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...