Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 476(2238): 20200038, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32831590

ABSTRACT

We consider versions of the grasshopper problem (Goulko & Kent 2017 Proc. R. Soc. A 473, 20170494) on the circle and the sphere, which are relevant to Bell inequalities. For a circle of circumference 2π, we show that for unconstrained lawns of any length and arbitrary jump lengths, the supremum of the probability for the grasshopper's jump to stay on the lawn is one. For antipodal lawns, which by definition contain precisely one of each pair of opposite points and have length π, we show this is true except when the jump length ϕ is of the form π(p/q) with p, q coprime and p odd. For these jump lengths, we show the optimal probability is 1 - 1/q and construct optimal lawns. For a pair of antipodal lawns, we show that the optimal probability of jumping from one onto the other is 1 - 1/q for p, q coprime, p odd and q even, and one in all other cases. For an antipodal lawn on the sphere, it is known (Kent & Pitalúa-García 2014 Phys. Rev. A 90, 062124) that if ϕ = π/q, where q ∈ N , then the optimal retention probability of 1 - 1/q for the grasshopper's jump is provided by a hemispherical lawn. We show that in all other cases where 0 < ϕ < π/2, hemispherical lawns are not optimal, disproving the hemispherical colouring maximality hypotheses (Kent & Pitalúa-García 2014 Phys. Rev. A 90, 062124). We discuss the implications for Bell experiments and related cryptographic tests.

2.
Phys Rev E ; 97(5-1): 053305, 2018 May.
Article in English | MEDLINE | ID: mdl-29906888

ABSTRACT

Numerical (and experimental) data analysis often requires the restoration of a smooth function from a set of sampled integrals over finite bins. We present the bin hierarchy method that efficiently computes the maximally smooth function from the sampled integrals using essentially all the information contained in the data. We perform extensive tests with different classes of functions and levels of data quality, including Monte Carlo data suffering from a severe sign problem and physical data for the Green's function of the Fröhlich polaron.

3.
Proc Math Phys Eng Sci ; 473(2207): 20170494, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29225501

ABSTRACT

We introduce and physically motivate the following problem in geometric combinatorics, originally inspired by analysing Bell inequalities. A grasshopper lands at a random point on a planar lawn of area 1. It then jumps once, a fixed distance d, in a random direction. What shape should the lawn be to maximize the chance that the grasshopper remains on the lawn after jumping? We show that, perhaps surprisingly, a disc-shaped lawn is not optimal for any d>0. We investigate further by introducing a spin model whose ground state corresponds to the solution of a discrete version of the grasshopper problem. Simulated annealing and parallel tempering searches are consistent with the hypothesis that, for d<π-1/2, the optimal lawn resembles a cogwheel with n cogs, where the integer n is close to [Formula: see text]. We find transitions to other shapes for [Formula: see text].

5.
Phys Rev Lett ; 113(26): 266402, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615360

ABSTRACT

We study how the conductance of a quantum point contact is affected by spin-orbit interactions, for systems at zero temperature both with and without electron-electron interactions. In the presence of spin-orbit coupling, tuning the strength and direction of an external magnetic field can change the dispersion relation and hence the local density of states in the point contact region. This modifies the effect of electron-electron interactions, implying striking changes in the shape of the 0.7-anomaly and introducing additional distinctive features in the first conductance step.

SELECTION OF CITATIONS
SEARCH DETAIL
...