Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 183: 105052, 2022 May.
Article in English | MEDLINE | ID: mdl-35430058

ABSTRACT

Rodent control is mainly done using anticoagulant rodenticides leading to the death of rodents through internal bleeding by targeting the VKORC1 protein. However, mutations in VKORC1 can lead to resistance to anticoagulant rodenticides that can cause treatment failure in the field. This study provides the first insight into the distribution, frequency and characterization of Vkorc1 mutations in roof rats (Rattus rattus) in France and in three administrative areas of Spain. The roof rat is present in France while it was thought to have almost disappeared with the expansion of the brown rat. Nevertheless, it has been found mainly in maritime areas. 151 roof rats out of 219 tested presented at least one missense mutation in the coding sequences of Vkorc1 gene (i.e. 69.0% of the rat). Nine Vkorc1 genotypes were detected (Y25F, A26P, R40G, S57F, W59C, W59R, H68N, Y25F/K152T and Y25F/W59R. Biochemical characterization of the consequences of these different genotypes proved that these various genotypes did not induce severe resistance to anticoagulant rodenticides. Even if many mutations of the Vkorc1 gene are present in roof rat populations in France, their management may be based in a first approach, considering the low levels of resistance induced, on the use of first-generation anticoagulants less dangerous for wildlife. The use of second-generation may be considered when treatment failure is observed or when bait consumption is limited.


Subject(s)
Rodenticides , Animals , Anticoagulants/pharmacology , Drug Resistance/genetics , France , Mutation , Mutation, Missense , Rats , Rodenticides/pharmacology , Spain , Vitamin K Epoxide Reductases/genetics
2.
Ecol Evol ; 7(8): 2767-2776, 2017 04.
Article in English | MEDLINE | ID: mdl-28428867

ABSTRACT

Anticoagulant rodenticides are commonly used to control rodent pests worldwide. They specifically inhibit the vitamin K epoxide reductase (VKORC1), which is an enzyme encoded by the Vkorc1 gene, involved in the recycling of vitamin K. Therefore, they prevent blood clotting. Numerous mutations of Vkorc1 gene were reported in rodents, and some are involved in the resistant to rodenticides phenotype. Two hundred and sixty-six mice tails were received from 65 different locations in France. Coding sequences of Vkorc1 gene were sequenced in order to detect mutations. Consequences of the observed mutations were evaluated by the use of recombinant VKORC1. More than 70% of mice presented Vkorc1 mutations. Among these mice, 80% were homozygous. Contrary to brown rats for which only one predominant Vkorc1 genotype was found in France, nine missense single mutations and four double mutations were observed in house mice. The single mutations lead to resistance to first-generation antivitamin K (AVKs) only and are certainly associated with the use of these first-generation molecules by nonprofessionals for the control of mice populations. The double mutations, probably obtained by genetic recombination, lead to in vitro resistance to all AVKs. They must be regarded as an adaptive evolution to the current use of second-generation AVKs. The intensive use of first-generation anticoagulants probably allowed the selection of a high diversity of mutations, which makes possible the genetic recombination and consequently provokes the emergence of the more resistant mutated Vkorc1 described to date.

3.
Pest Manag Sci ; 73(2): 325-331, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27196872

ABSTRACT

BACKGROUND: Antivitamin K anticoagulant (AVK) rodenticides are commonly used to control rodent pests worldwide. They specifically inhibit the VKORC1 enzyme essential for the recycling of vitamin K, and thus prevent blood clotting and cause death by haemorrhage. Numerous mutations or polymorphisms of the Vkorc1 gene were reported in rodents, and some led to resistance to rodenticides. In house mice (Mus musculus domesticus), adaptive introgression of the Vkorc1 gene from the Algerian mouse (Mus spretus) was reported. This adaptive introgression causes the substitution of four amino acids in M. musculus domesticus. RESULTS: The consequences of introgression were assessed by (i) the characterisation of the in vivo resistant phenotype of adaptive Vkorc1spr -introgressed mice, (ii) the characterisation of the ex vivo resistance phenotype of the liver VKOR activity and (iii) the comparison of these results with the properties of recombinant VKORC1spr protein expressed in yeast. The resistance factor (from 1 to 120) induced by the four introgressed polymorphisms obtained using these three approaches was dependent on the AVKs used but were highly correlated among the three approaches. CONCLUSION: The four introgressed polymorphisms were clearly the cause of the strong resistant phenotype observed in the field. In the context of strong selection pressure due to the extensive use of AVKs, this resistant phenotype may explain the widespread distribution of this genotype from Spain to Germany. © 2016 Society of Chemical Industry.


Subject(s)
Anticoagulants , Mice/genetics , Rodent Control/methods , Rodenticides , Vitamin K Epoxide Reductases/genetics , Animals , Female , Genotype , Hybridization, Genetic , Liver/enzymology , Male , Phenotype , Pichia , Polymorphism, Genetic
4.
Pest Manag Sci ; 72(3): 544-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25847836

ABSTRACT

BACKGROUND: In spite of intensive use of bromadiolone, rodent control was inefficient on a farm infested by rats in Zaragoza, Spain. While metabolic resistance was previously described in this rodent species, the observation of a target resistance to antivitamin K rodenticides had been poorly documented in Rattus rattus. RESULTS: From rats trapped on the farm, cytochrome b and Vkorc1 genes were amplified by PCR and sequenced in order to identify species and detect potential Vkorc1 mutations. VKORC1-deduced amino acid sequences were thus expressed in Pichia pastoris, and inhibition constants towards various rodenticides were determined. The ten rats trapped on the farm were all identified as R. rattus. They were found to be homozygous for the g.74A>T nucleotide replacement in exon 1 of the Vkorc1 gene, leading to p.Y25F mutation. This mutation led to increased apparent inhibition constants towards various rodenticides, probably caused by a partial loss of helical structure of TM4. CONCLUSION: The p.Y25F mutation detected in the Vkorc1 gene in R. rattus trapped on the Spanish farm is associated with the resistance phenotype to bromadiolone that has been observed. It is the first evidence of target resistance to antivitamin K anticoagulants in R. rattus.


Subject(s)
4-Hydroxycoumarins/metabolism , 4-Hydroxycoumarins/pharmacology , Drug Resistance/genetics , Indenes/metabolism , Mutation , Rats/genetics , Rodenticides/pharmacology , Vitamin K Epoxide Reductases/genetics , Vitamin K/antagonists & inhibitors , Amino Acid Sequence , Animals , Anticoagulants/pharmacology , Rats/metabolism , Rodent Control , Sequence Alignment , Spain , Vitamin K/metabolism , Vitamin K Epoxide Reductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...