Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990150

ABSTRACT

Brønsted acid zeolites catalyze alkene oligomerization reactions, an important route to produce fuels and chemicals from light hydrocarbon feedstocks. Propene dimerization rates (per H+, 503 K) decrease monotonically with increasing crystallite size in MFI zeolites because heavy oligomer products remain occluded within microporous voids and restrict intrazeolite diffusion of reactants and products. Here, we show that the preferential zoning of framework Al centers and their associated H+ sites toward exterior surfaces of MFI crystallites in an "egg-shell" architecture minimizes the extent of diffusion-enhanced secondary reactions within a given crystallite, which increases both propene dimerization rates (per H+) and selectivity to true oligomer products. These results show that tailoring Al distributions to be spatially zoned toward external surfaces of medium-pore zeolite crystallites is efficacious at minimizing diffusion path lengths to increase alkene oligomerization rates and selectivity to true oligomer products.

2.
ACS Catal ; 14(11): 8376-8388, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38868104

ABSTRACT

Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO x with NH3. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cha cage to activate O2 and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO x SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO4]- tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and in situ Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.

3.
J Am Chem Soc ; 146(15): 10666-10678, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573868

ABSTRACT

Brønsted acidic zeolites are ubiquitous catalysts in fuel and chemical production. Broadening the catalytic diversity of a given zeolite requires strategies to manipulate the acid site placement at framework positions within distinct microporous locations. Here, we combine experiment and theory to elucidate how intermolecular interactions between organic structure-directing agents (OSDAs) and framework Al centers influence the placement of H+ sites in distinct void environments of MFI zeolites and demonstrate the catalytic consequences of active site location on kinetically controlled (403 K) toluene methylation to xylene regioisomers. Kinetic measurements, interpreted using mechanism-derived rate expressions and transition state theory, alongside density functional theory (DFT) calculations show that larger intersection environments similarly stabilize all three xylene isomer transition states without altering well-established aromatic substitution patterns (ortho/para/meta ∼ 60%:30%:10%), while smaller channel environments preferentially destabilize transition states that form bulkier ortho- and meta-isomers, thereby resulting in high intrinsic para-xylene selectivity (∼80%). DFT calculations reveal that the flexibility of nonconventional OSDAs (e.g., 1,4-diazabicyclo[2.2.2]octane) to reorient within MFI intersections and their ability to hydrogen-bond to form protonated complexes favor the placement of Al in smaller channel environments compared to conventional quaternary OSDAs (e.g., tetra-n-propylammonium). These molecular-level insights establish a mechanistic link between OSDA structure, active site placement, and transition state stability in MFI zeolites and provide active site design strategies that are orthogonal to crystallite design approaches harnessing complex reaction-diffusion phenomena to enhance regioisomer selectivity in the industrial production of valuable polymer precursors.

4.
JACS Au ; 2(11): 2585-2595, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36465546

ABSTRACT

Brønsted acid zeolites catalyze alkene oligomerization to heavier hydrocarbon products of varied size and branching. Propene dimerization rates decrease monotonically with increasing crystallite size for MFI zeolites synthesized with fixed H+-site density, revealing the strong influence of intrazeolite transport limitations on measured rates, which has gone unrecognized in previous studies. Transient changes in dimerization rates upon step-changes in reactant pressure (150-470 kPa C3H6) or temperature (483-523 K) reveal that intrazeolite diffusion limitations become more severe under reaction conditions that favor the formation of heavier products. Together with effectiveness factor formalisms, these data reveal that product and reactant diffusion, and consequently oligomerization rates and selectivity, are governed by the composition of hydrocarbon products that accumulate within zeolitic micropores during alkene oligomerization. This occluded organic phase strongly influences rates and selectivities of alkene oligomerization on medium-pore zeolites (MFI, MEL, TON). Recognizing the coupled influences of kinetic factors and intrazeolite transport limitations imposed by occluded reaction products provides opportunities to competently tailor rates and selectivity in alkene oligomerization and other molecular chain-growth reactions through judicious selection of zeolite topology and reaction conditions.

5.
ACS Mater Au ; 2(2): 163-175, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-36855771

ABSTRACT

Control of the spatial proximity of Brønsted acid sites within the zeolite framework can result in materials with properties that are distinct from materials synthesized through conventional crystallization methods or available from commercial sources. Recent experimental evidence has shown that turnover rates of different acid-catalyzed reactions increase with the fraction of proximal sites in chabazite (CHA) zeolites. The catalytic conversion of oxygenates is an important research area, and the dehydration of methanol to dimethyl ether (DME) is a well-studied reaction as part of methanol-to-olefin chemistry catalyzed by solid acids. Published experimental data have shown that DME formation rates (per acid site) increase systematically with the fraction of proximal acid sites in the six-membered ring of CHA. Here, we probe the effect of acid site proximity in CHA on methanol dehydration rates using electronic structure calculations and microkinetic modeling to identify the primary causes of this chemistry and their relationship to the local structure of the catalyst at the nanoscale. We report a density functional theory-parametrized microkinetic model of methanol dehydration to DME, catalyzed by acidic CHA zeolite with direct comparison to experimental data. Effects of proximal acid sites on reaction rates were captured quantitatively for a range of operating conditions and catalyst compositions, with a focus on total paired acid site concentration and reactant clustering to form higher nuclearity complexes. Next-nearest neighbor paired acid sites were identified as promoting the formation of methanol trimer clusters rather than the inhibiting tetramer or pentamer clusters, resulting in large increases in the rate for DME production due to the lower energy barriers present in the concerted methanol trimer reaction pathway. The model framework developed in this study can be extended to other zeolite materials and reaction chemistries toward the goal of rational design and development of next-generation catalytic materials and chemical processes.

6.
ACS Omega ; 6(44): 29471-29482, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34778619

ABSTRACT

The structure and evolution of Pd species in Pd-exchanged zeolite materials intended for use as passive NO x adsorbers were examined under various pretreatment conditions. Using in situ CO-diffuse reflectance infrared spectroscopy, Pd structures were characterized after 500 °C pretreatments in inert (Ar), water (1-2% H2O in Ar), oxidizing (air), and reducing (H2, CO) atmospheres. Two zeolites of similar Si/Al ratios but different framework topologies (Beta, CHA) were found to show different distributions of Pd species, depending on the reducing agent used. Reduction in H2 (500 °C; 10% H2 in Ar) followed by re-oxidation (500 °C; air) led to higher amounts of single-site Pd ions on Pd-CHA than Pd-Beta, whereas high-temperature reduction in CO (500 °C; 1000 ppm CO in Ar) followed by re-oxidation (500 °C; air) led to significant loss of ionic Pd on both Pd-CHA and Pd-Beta, albeit H2 temperature-programmed reduction and XPS experiments suggest that this phenomena may be limited to surface Pd. High-temperature treatments with water (500 °C; 1-2% H2O in Ar) are shown to form either Pd metal or PdO particles, with Pd-Beta being more susceptible to these effects than Pd-CHA. This work suggests that the effects of CO are especially problematic with respect to the durability of these materials in passive NO x adsorption applications, especially in the case of Beta zeolite.

7.
Chem Sci ; 12(13): 4699-4708, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-34168752

ABSTRACT

Reactions catalyzed within porous inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, collectively referred to as "solvent effects". Transition state theory treatments define how solvation phenomena enter kinetic rate expressions, and identify two distinct types of solvent effects that originate from molecular clustering and from the solvation of such clusters by extended solvent networks. We review examples from the recent literature that investigate reactions within microporous zeolite catalysts to illustrate these concepts, and provide a critical appraisal of open questions in the field where future research can aid in developing new chemistry and catalyst design principles.

8.
Nat Commun ; 12(1): 2322, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33875664

ABSTRACT

In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+ and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+ and Ga3+ ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+ is similar to Ni2+, while Ga3+ forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and ß-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.

9.
Annu Rev Chem Biomol Eng ; 12: 115-136, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33826852

ABSTRACT

Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.


Subject(s)
Zeolites , Catalysis , Catalytic Domain , Metals
10.
Chem Sci ; 11(27): 7102-7122, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-33250979

ABSTRACT

Aqueous-phase reactions within microporous Brønsted acids occur at active centers comprised of water-reactant-clustered hydronium ions, solvated within extended hydrogen-bonded water networks that tend to stabilize reactive intermediates and transition states differently. The effects of these diverse clustered and networked structures were disentangled here by measuring turnover rates of gas-phase ethanol dehydration to diethyl ether (DEE) on H-form zeolites as water pressure was increased to the point of intrapore condensation, causing protons to become solvated in larger clusters that subsequently become solvated by extended hydrogen-bonded water networks, according to in situ IR spectra. Measured first-order rate constants in ethanol quantify the stability of SN2 transition states that eliminate DEE relative to (C2H5OH)(H+)(H2O) n clusters of increasing molecularity, whose structures were respectively determined using metadynamics and ab initio molecular dynamics simulations. At low water pressures (2-10 kPa H2O), rate inhibition by water (-1 reaction order) reflects the need to displace one water by ethanol in the cluster en route to the DEE-formation transition state, which resides at the periphery of water-ethanol clusters. At higher water pressures (10-75 kPa H2O), water-ethanol clusters reach their maximum stable size ((C2H5OH)(H+)(H2O)4-5), and water begins to form extended hydrogen-bonded networks; concomitantly, rate inhibition by water (up to -3 reaction order) becomes stronger than expected from the molecularity of the reaction, reflecting the more extensive disruption of hydrogen bonds at DEE-formation transition states that contain an additional solvated non-polar ethyl group compared to the relevant reactant cluster, as described by non-ideal thermodynamic formalisms of reaction rates. Microporous voids of different hydrophilic binding site density (Beta; varying H+ and Si-OH density) and different size and shape (Beta, MFI, TON, CHA, AEI, FAU), influence the relative extents to which intermediates and transition states disrupt their confined water networks, which manifest as different kinetic orders of inhibition at high water pressures. The confinement of water within sub-nanometer spaces influences the structures and dynamics of the complexes and extended networks formed, and in turn their ability to accommodate the evolution in polarity and hydrogen-bonding capacity as reactive intermediates become transition states in Brønsted acid-catalyzed reactions.

11.
Acc Chem Res ; 53(9): 1881-1892, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32786332

ABSTRACT

ConspectusCopper-exchanged chabazite (Cu-CHA) zeolites are catalysts used in diesel emissions control for the abatement of nitrogen oxides (NOx) via selective catalytic reduction (SCR) reactions with ammonia as the reductant. The discovery of these materials in the early 2010s enabled a step-change improvement in diesel emissions aftertreatment technology. Key advantages of Cu-CHA zeolites over prior materials include their effectiveness at the lower temperatures characteristic of diesel exhaust, their durability under high-temperature hydrothermal conditions, and their resistance to poisoning from residual hydrocarbons present in exhaust. Fundamental catalysis research has since uncovered mechanistic and kinetic features that underpin the ability of Cu-CHA to selectively reduce NOx under strongly oxidizing conditions and to achieve improved NOx conversion relative to other zeolite frameworks, particularly at low exhaust temperatures and with ammonia instead of other reductants.One critical mechanistic feature is the NH3 solvation of exchanged Cu ions at low temperatures (<523 K) to create cationic Cu-amine coordination complexes that are ionically tethered to anionic Al framework sites. This ionic tethering confers regulated mobility that facilitates interconversion between mononuclear and binuclear Cu complexes, which is necessary to propagate SCR through a Cu2+/Cu+ redox cycle during catalytic turnover. This dynamic catalytic mechanism, wherein single and dual metal sites interconvert to mediate different half-reactions of the redox cycle, combines features canonically associated with homogeneous and heterogeneous reaction mechanisms.In this Account, we describe how a unified experimental and theoretical interrogation of Cu-CHA catalysts in operando provided quantitative evidence of regulated Cu ion mobility and its role in the SCR mechanism. This approach relied on new synthetic methods to prepare model Cu-CHA zeolites with varied active-site structures and spatial densities in order to verify that the kinetic and mechanistic models describe the catalytic behavior of a family of materials of diverse composition, and on new computational approaches to capture the active-site structure and dynamics under conditions representative of catalysis. Ex situ interrogation revealed that the Cu structure depends on the conditions for the zeolite synthesis, which influence the framework Al substitution patterns, and that statistical and electronic structure models can enumerate Cu site populations for a known Al distribution. This recognition unifies seemingly disparate spectroscopic observations and inferences regarding Cu ion structure and responses to different external conditions. SCR rates depend strongly on the Cu spatial density and zeolite composition in kinetic regimes where Cu+ oxidation with O2 becomes rate-limiting, as occurs at lower temperatures and under fuel-rich conditions. Transient experiments, ab initio molecular dynamics simulations, and statistical models relate these sensitivities to the mobility constraints imposed by the CHA framework on NH3-solvated Cu ions, which regulate the pore volume accessible to these ions and their ability to pair and complete the catalytic cycle. This highlights the key characteristics of the CHA framework that enable superior performance under low-temperature SCR reaction conditions.This work illustrates the power of precise control over a catalytic material, simultaneous kinetic and spectroscopic interrogation over a wide range of reaction conditions, and computational strategies tailored to capture those reaction conditions to reveal in microscopic detail the mechanistic features of a complex and widely practiced catalysis. In doing so, it highlights the key role of ion mobility in catalysis and thus potentially a more general phenomenon of reactant solvation and active site mobilization in reactions catalyzed by exchanged metal ions in zeolites.

12.
Angew Chem Int Ed Engl ; 59(42): 18686-18694, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32659034

ABSTRACT

Zeolite reactivity depends on the solvating environments of their micropores and the proximity of their Brønsted acid sites. Turnover rates (per H+ ) for methanol and ethanol dehydration increase with the fraction of H+ sites sharing six-membered rings of chabazite (CHA) zeolites. Density functional theory (DFT) shows that activation barriers vary widely with the number and arrangement of Al (1-5 per 36 T-site unit cell), but cannot be described solely by Al-Al distance or density. Certain Al distributions yield rigid arrangements of anionic charge that stabilize cationic intermediates and transition states via H-bonding to decrease barriers. This is a key feature of acid catalysis in zeolite solvents, which lack the isotropy of liquid solvents. The sensitivity of polar transition states to specific arrangements of charge in their solvating environments and the ability to position such charges in zeolite lattices with increasing precision herald rich catalytic diversity among zeolites of varying Al arrangement.

13.
Angew Chem Int Ed Engl ; 59(43): 19102-19107, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32602991

ABSTRACT

Aqueous-phase isomerization of d-glucose to d-fructose and l-sorbose is catalyzed in parallel by Lewis acidic Ti sites in siliceous frameworks. Glucose isomerization rates (per Ti, 373 K) are undetectable when Ti sites are confined within mesoporous voids (Ti-MCM-41, TiO2 -SiO2 ) and increase to detectable values when Ti sites are confined within the smaller 12-membered ring (12-MR) micropores of Ti-Beta. Isomerization rates decrease to lower values (by ≈20×) with further decreases in micropore size as Ti sites are confined within 10-MR pores (Ti-MFI, Ti-CON), likely because of intrapore reactant diffusion restrictions, and reach undetectable values within the 8-MR pores of Ti-CHA as size exclusion prevents glucose from accessing active sites. Remarkably, the selectivity toward l-sorbose over d-fructose increases systematically as spatial constraints around Ti sites become tighter, and is >10 on Ti-MFI. These findings demonstrate the marked influence of confinement around Ti active sites on the selectivity between parallel stereoselective sugar isomerization pathways.

14.
J Phys Chem Lett ; 11(13): 5029-5036, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32496798

ABSTRACT

NOx selective catalytic reduction (SCR) with NH3 on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how operando spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such operando data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms ex situ become coordinated to NH3 in situ and dynamically interconvert between mononuclear and binuclear NH3-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with operando spectroscopy.

15.
J Am Chem Soc ; 142(10): 4807-4819, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32053365

ABSTRACT

We combine experiment and theory to investigate the cooperation or competition between organic and inorganic structure-directing agents (SDAs) for occupancy within microporous voids of chabazite (CHA) zeolites and to rationalize the effects of SDA siting on biasing the framework Al arrangement (Al-O(-Si-O)x-Al, x = 1-3) among CHA zeolites of essentially fixed composition (Si/Al = 15). CHA zeolites crystallized using mixtures of TMAda+ and Na+ contain one TMAda+ occluded per cage and Na+ co-occluded in an amount linearly proportional to the number of 6-MR paired Al sites, quantified by Co2+ titration. In contrast, CHA zeolites crystallized using mixtures of TMAda+ and K+ provide evidence that three K+ cations, on average, displace one TMAda+ from occupying a cage and contain predominantly 6-MR isolated Al sites. Moreover, CHA crystallizes from synthesis media containing more than 10-fold higher inorganic-to-organic ratios with K+ than with Na+ before competing crystalline phases form, providing a route to decrease the amount of organic SDA needed to crystallize high-silica CHA. Density functional theory calculations show that differences in the ionic radii of Na+ and K+ determine their preferences for siting in different CHA rings, which influences their energy to co-occlude with TMAda+ and stabilize different Al configurations. Monte Carlo models confirm that energy differences resulting from Na+ or K+ co-occlusion promote the formation of 6-MR and 8-MR paired Al arrangements, respectively. These results highlight opportunities to exploit using mixtures of organic and inorganic SDAs during zeolite crystallization in order to more efficiently use organic SDAs and influence framework Al arrangements.

16.
Angew Chem Int Ed Engl ; 58(46): 16422-16426, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31529799

ABSTRACT

Ab-initio molecular dynamics simulations and transmission infrared spectroscopy are employed to characterize the structure of water networks in defect-functionalized microporous zeolites. Thermodynamically stable phases of clustered water molecules are localized at some of the defects in zeolite Beta, which include catalytic sites such as framework Lewis acidic Sn atoms in closed and hydrolyzed-open forms, as well as silanol nests. These water clusters compete with ideal gas-like structures at low water densities and pore-filling phases at higher water densities, with the equilibrium phase determined by the water chemical potential. The physical characteristics of these phases are determined by the defect identity, with the local binding and orientation of hydroxyl moieties around the defects playing a central role. The results suggest general principles for how the structure of polar solvents in microporous solid acids is influenced by local defect functionalization, and the thermodynamic stability of the condensed phases surrounding such sites, in turn, implies that the catalysis of Lewis acids will be influenced by local water ordering.

17.
Chem Sci ; 10(8): 2373-2384, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30881665

ABSTRACT

The speciation and structure of Cu ions and complexes in chabazite (SSZ-13) zeolites, which are relevant catalysts for nitrogen oxide reduction and partial methane oxidation, depend on material composition and reaction environment. Ultraviolet-visible (UV-Vis) spectra of Cu-SSZ-13 zeolites synthesized to contain specific Cu site motifs, together with ab initio molecular dynamics and time-dependent density functional theory calculations, were used to test the ability to relate specific spectroscopic signatures to specific site motifs. Geometrically distinct arrangements of two framework Al atoms in six-membered rings are found to exchange Cu2+ ions that become spectroscopically indistinguishable after accounting for the finite-temperature fluctuations of the Cu coordination environment. Nominally homogeneous single Al exchange sites are found to exchange a heterogeneous mixture of [CuOH]+ monomers, O- and OH-bridged Cu dimers, and larger polynuclear complexes. The UV-Vis spectra of the latter are sensitive to framework Al proximity, to precise ligand environment, and to finite-temperature structural fluctuations, precluding the precise assignment of spectroscopic features to specific Cu structures. In all Cu-SSZ-13 samples, these dimers and larger complexes are reduced by CO to Cu+ sites at 523 K, leaving behind isolated [CuOH]+ sites with a characteristic spectroscopic identity. The various mononuclear and polynuclear Cu2+ species are distinguishable by their different responses to reducing environments, with implications for their relevance to catalytic redox reactions.

18.
J Am Chem Soc ; 141(18): 7302-7319, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30649870

ABSTRACT

Hydrophobic voids within titanium silicates have long been considered necessary to achieve high rates and selectivities for alkene epoxidations with H2O2. The catalytic consequences of silanol groups and their stabilization of hydrogen-bonded networks of water (H2O), however, have not been demonstrated in ways that lead to a clear understanding of their importance. We compare turnover rates for 1-octene epoxidation and H2O2 decomposition over a series of Ti-substituted zeolite *BEA (Ti-BEA) that encompasses a wide range of densities of silanol nests ((SiOH)4). The most hydrophilic Ti-BEA gives epoxidation turnover rates that are 100 times larger than those in defect-free Ti-BEA, yet rates of H2O2 decomposition are similar for all (SiOH)4 densities. These differences cause the most hydrophilic Ti-BEA to also give the highest selectivities, which defies conventional wisdom. Spectroscopic, thermodynamic, and kinetic evidence indicate that these catalytic differences are not due to changes in the electronic affinity of the active site, the electronic structure of Ti-OOH intermediates, or the mechanism for epoxidation. Comparisons of apparent activation enthalpies and entropies show that differences in epoxidation rates and selectivities reflect favorable entropy gains produced when epoxidation transition states disrupt hydrogen-bonded H2O clusters anchored to (SiOH)4 near active sites. Transition states for H2O2 decomposition hydrogen bond with H2O in ways similar to Ti-OOH reactive species, such that decomposition becomes insensitive to the presence of (SiOH)4. Collectively, these findings clarify how molecular interactions between reactive species, hydrogen-bonded solvent networks, and polar surfaces can influence rates and selectivities for epoxidation (and other reactions) in zeolite catalysts.


Subject(s)
Alkenes/chemistry , Epoxy Compounds/chemistry , Hydrogen Peroxide/chemistry , Zeolites/chemistry , Catalysis , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Solvents
19.
J Am Chem Soc ; 140(43): 14244-14266, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30265002

ABSTRACT

Lewis acid sites in zeolites catalyze aqueous-phase sugar isomerization at higher turnover rates when confined within hydrophobic rather than within hydrophilic micropores; however, relative contributions of competitive water adsorption at active sites and preferential stabilization of isomerization transition states have remained unclear. Here, we employ a suite of experimental and theoretical techniques to elucidate the effects of coadsorbed water on glucose isomerization reaction coordinate free energy landscapes. Transmission IR spectra provide evidence that water forms extended hydrogen-bonding networks within hydrophilic but not hydrophobic micropores of Beta zeolites. Aqueous-phase glucose isomerization turnover rates measured on Ti-Beta zeolites transition from first-order to zero-order dependence on glucose thermodynamic activity, as Lewis acidic Ti sites transition from water-covered to glucose-covered, consistent with intermediates identified from modulation excitation spectroscopy during in situ attenuated total reflectance IR experiments. First-order and zero-order isomerization rate constants are systematically higher (by 3-12×, 368-383 K) when Ti sites are confined within hydrophobic micropores. Apparent activation enthalpies and entropies reveal that glucose and water competitive adsorption at Ti sites depend weakly on confining environment polarity, while Gibbs free energies of hydride-shift isomerization transition states are lower when confined within hydrophobic micropores. DFT calculations suggest that interactions between intraporous water and isomerization transition states increase effective transition state sizes through second-shell solvation spheres, reducing primary solvation sphere flexibility. These findings clarify the effects of hydrophobic pockets on the stability of coadsorbed water and isomerization transition states and suggest design strategies that modify micropore polarity to influence turnover rates in liquid water.

20.
Science ; 357(6354): 898-903, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28818971

ABSTRACT

Copper ions exchanged into zeolites are active for the selective catalytic reduction (SCR) of nitrogen oxides (NO x ) with ammonia (NH3), but the low-temperature rate dependence on copper (Cu) volumetric density is inconsistent with reaction at single sites. We combine steady-state and transient kinetic measurements, x-ray absorption spectroscopy, and first-principles calculations to demonstrate that under reaction conditions, mobilized Cu ions can travel through zeolite windows and form transient ion pairs that participate in an oxygen (O2)-mediated CuI→CuII redox step integral to SCR. Electrostatic tethering to framework aluminum centers limits the volume that each ion can explore and thus its capacity to form an ion pair. The dynamic, reversible formation of multinuclear sites from mobilized single atoms represents a distinct phenomenon that falls outside the conventional boundaries of a heterogeneous or homogeneous catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...