Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Cardiol ; 78(24): 2439-2453, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34886965

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age. OBJECTIVES: The authors tested the cardioprotective effect of chronic administration of the ARM036, a small molecule that stabilizes the closed conformation of the cardiac sarcoplasmic reticulum ryanodine receptor/calcium release channel (RyR2) in young GRMD-dogs. METHODS: Two-month-old GRMD-dogs were treated with ARM036 or placebo for 4 months. Healthy-dogs of the same genetic background served as controls. Cardiac function was evaluated by conventional and 2-dimensional speckle-tracking echocardiography. Cardiac cellular and molecular analyses were performed at 6 months old. RESULTS: Conventional echocardiography showed normal LV dimensions and ejection fraction in 6-month-old GRMD dogs. Interestingly, 2-dimensional speckle-tracking echocardiography revealed decreased global longitudinal strain and the presence of hypokinetic segments in placebo-treated GRMD dogs. Single-channel measurements revealed higher RyR2 open probability at low resting Ca2+ in GRMD cardiomyocytes than in controls. ARM036 prevented those in vivo and in vitro dysfunctions in GRMD dogs. Myofilament Ca2+-sensitivity was increased in permeabilized GRMD cardiomyocytes at short sarcomere length. ARM036 had no effect on this parameter. Cross-bridge cycling kinetics were altered in GRMD myocytes and recovered with ARM036 treatment, which coincided with the level of myosin binding protein-C-S glutathionylation. CONCLUSIONS: GRMD-dogs exhibit early LV dysfunction associated with altered myofilament contractile properties. These abnormalities were prevented pharmacologically by stabilizing RyR2 with ARM036.


Subject(s)
Muscular Dystrophy, Duchenne/complications , Ryanodine Receptor Calcium Release Channel/metabolism , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left/physiology , Animals , Biopsy , Disease Models, Animal , Dogs , Echocardiography , Muscular Dystrophy, Duchenne/diagnosis , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibrils/metabolism , Myofibrils/pathology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
2.
Eur Heart J ; 31(12): 1529-37, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20028694

ABSTRACT

AIMS: To investigate the adaptations of left ventricular function and calcium handling to chronic heart rate reduction with ivabradine in the reperfused heart. METHODS AND RESULTS: Rabbits underwent 20 min coronary artery occlusion followed by 3 weeks of reperfusion. Throughout reperfusion, rabbits received ivabradine (10 mg/kg/day) or vehicle (control). Ivabradine reduced heart rate by about 20% and improved both ejection fraction (+35%) and systolic displacement (+26%) after 3 weeks of treatment. Interestingly, this was associated with a two-fold increase expression of FKBP12/12.6. There was no difference in the expressions of phospholamban, SERCA2a, calsequestrin, ryanodine, phospho-ryanodine, and Na(2+)/Ca(2+) exchanger in the two groups. Infarct scar and vascular density were similar in both groups. Administration of a single intravenous bolus of ivabradine (1 mg/kg) in control rabbits at 3 weeks of reperfusion also significantly improved acutely ejection fraction and systolic displacement. CONCLUSION: Chronic heart rate reduction protects the myocardium against ventricular dysfunction induced by myocardial ischaemia followed by 3 weeks of reperfusion. Beyond pure heart rate reduction, ivabradine improves global and regional systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term adaptation in calcium handling, as supported by the increase in FKBP12/12.6 expression.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Benzazepines/pharmacology , Heart Rate/drug effects , Tacrolimus Binding Protein 1A/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Coronary Occlusion/physiopathology , Ivabradine , Myocardial Infarction/physiopathology , Myocardial Reperfusion/methods , Rabbits , Stroke Volume/drug effects , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...