Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteins Proteom ; 12(1): 1-13, 2021.
Article in English | MEDLINE | ID: mdl-33613009

ABSTRACT

The emergence of novel coronavirus SARS-CoV-2 is responsible for causing coronavirus disease-19 (COVID-19) imposing serious threat to global public health. Infection of SARS-CoV-2 to the host cell is characterized by direct translation of positive single stranded (+ ss) RNA to form large polyprotein polymerase 1ab (pp1ab), which acts as precursor for a number of nonstructural and structural proteins that play vital roles in replication of viral genome and biosynthesis of new virus particles. The maintenance of viral protein homeostasis is essential for continuation of viral life cycle in the host cell. To test whether the protein homeostasis of SARS-CoV-2 can be disrupted by inducing specific protein aggregation, we made an effort to examine whether the viral proteome contains any aggregation prone regions (APRs) that can be explored for inducing toxic protein aggregation specifically in viral proteins and without affecting the host cell. This curiosity leads to the identification of several (> 70) potential APRs in SARS-CoV-2 proteome. The length of the APRs ranges from 5 to 25 amino acid residues. Nearly 70% of total APRs investigated are relatively smaller and found to be in the range of 5-10 amino acids. The maximum number of ARPs (> 50) was observed in pp1ab. On the other hand, the structural proteins such as, spike (S), nucleoprotein (N), membrane (M) and envelope (E) proteins also possess APRs in their primary structures which altogether constitute 30% of the total APRs identified. Our findings may provide new windows of opportunities to design specific peptide-based, anti-SARS-CoV-2 therapeutic molecules against COVID-19.

2.
Int J Biol Macromol ; 163: 702-710, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32650012

ABSTRACT

The aggregation of ß-crystallins in the human eye lens constitutes a critical step during the development of cataract. We anticipated that the presence of Aggregation-Prone Regions (APRs) in their primary structure, which might be responsible for conformational change required for the self-assembly. To examine the presence of APRs, we systematically analyzed the primary structures of ß-crystallins. Out of seven subtypes, the ßB1-crystallin found to possess the highest aggregation score with 9 APRs in its primary structure. To confirm the amyloidogenic nature of these newly identified APRs, we further studied the aggregation behavior of one of the APRs spanning from 174 to 180 residues (174LWVYGFS180) of ßB1-crystallin, which is referred as ßB1(174-180). Under in vitro conditions, the synthetic analogue of ßB1(174-180) peptide formed visible aggregates and displayed high Congo red (CR) bathochromic shift, Thioflavin T (ThT) binding and fibrilar morphology under transmission electron microscopy, which are the typical characteristics of amyloids. Further, the aggregated ßB1(174-180) was found to induce aggregation of the soluble fraction of proteins isolated from the human cataractous lens. This observation suggests that the presence of APRs in ßB1-crystallin might be serving as one of the intrinsic supplementary factors responsible for constitutive aggregation behavior of ßB1-crystallin and development of cataract.


Subject(s)
Amyloidogenic Proteins/chemistry , Cataract , Lens, Crystalline/chemistry , Protein Aggregates , beta-Crystallin B Chain/chemistry , Adsorption , Amyloidogenic Proteins/isolation & purification , Amyloidogenic Proteins/metabolism , Amyloidogenic Proteins/ultrastructure , Amyloidosis , Cataract/metabolism , Chemical Phenomena , Congo Red/chemistry , Lens, Crystalline/metabolism , Molecular Dynamics Simulation , Protein Conformation , Solubility , Structure-Activity Relationship , beta-Crystallin B Chain/metabolism
3.
J Pept Sci ; 25(8): e3178, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31317612

ABSTRACT

Pheromone peptides are an important component of bacterial quorum-sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid-like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug-resistant pathogenic strains.


Subject(s)
Bacterial Proteins/chemistry , Enterococcus faecalis/chemistry , Bacterial Proteins/chemical synthesis , Particle Size , Protein Aggregates , Protein Conformation
4.
J Pept Sci ; 25(4): e3152, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784133

ABSTRACT

Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248-286 was found to be the most active and was termed as semen-derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248-286 significantly differs from the other known amyloidogenic peptides, including Aß and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), on PAP248-286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248-286 . Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C-terminus are crucial for PAP248-286 aggregation and are anticipated to be major DOPC-interacting partners. Therefore, we further assessed the aggregation behaviour of C-terminal (PAP273-286 ) fragment of PAP248-286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to ß-sheet transition.


Subject(s)
Peptides/antagonists & inhibitors , Phosphatidylcholines/pharmacology , Semen/chemistry , Humans , Kinetics , Phosphatidylcholines/chemistry , Protein Aggregates/drug effects
5.
J Pept Sci ; 25(3): e3151, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30714272

ABSTRACT

Protegrin-4 (PG-4) is a member of the porcine leukocyte protegrins family of cysteine-rich antimicrobial peptides (AMPs) isolated from Sus scrofa. It consists of 18 amino acid residues and works as a part of innate immune system. In this study, we examined the intrinsic aggregation propensity of this AMP using multiple computational algorithms, namely, TANGO, AGGRESCAN, FOLDAMYLOID, AMYLPRED, and ZYGGREGATOR, and found that the peptide is predicted to have a high propensity for the ß sheet formation that disposes this peptide to be amyloidogenic. Under in vitro conditions, PG-4 formed visible aggregates and displayed the hallmark properties of typical amyloids such as enhanced binding of Congo red, increased fluorescence with Thioflavin-T, and fibrillar morphology under transmission electron microscopy. Then we examined its antimicrobial activity against Bacillus subtilis and found that the aggregated peptide retained its antimicrobial activity. Additionally, the aggregates remain non-toxic to the HEK293 and Caco2 cells. Our study suggests that the inherent aggregation properties of AMP can rationally be explored as a potential source of peptide-based antimicrobials with enhanced stability.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Protein Aggregates , Protein Aggregation, Pathological , Animals , Antimicrobial Cationic Peptides/pharmacology , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Caco-2 Cells , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects , Sus scrofa
6.
Curr Eye Res ; 42(10): 1368-1377, 2017 10.
Article in English | MEDLINE | ID: mdl-28628342

ABSTRACT

PURPOSE: Crystallin is a major protein present in eye lens. Peptide fragment αA(66-80) derived from αA-crystallin possesses high aggregation propensity and forms amyloid-like structures. αA(66-80) aggregates are known to interact with soluble crystallins and destabilize native structures that subsequently undergo aggregation. Crystallin aggregation in eye lens leads to reduction in lens opacity, the condition generally referred to as a cataract. Thus, αA(66-80) aggregation appears to be an important event during cataract development, and therefore, inhibition of αA(66-80) aggregation may be an attractive strategy to intervene in cataract development. MATERIALS AND METHODS: αA(66-80) peptide derived from αA-crystallin possesses high aggregation potential and has a crucial role in cataract development. In order to inhibit the aggregation of αA(66-80) peptide, epigallocatechin-3-gallate (EGCG), a major active constituent of green tea, was employed. The inhibitory effect was assessed by Congo Red (CR) spectral shift assay, Thioflavin-T binding assay, transmission electron microscopy and fluorescence microscopy. RESULTS: The inhibitory potential of EGCG toward αA-crystallin was clearly observed as in the presence of EGCG, the αA(66-80) aggregation was considerably inhibited and the pre-formed fibrillary aggregates of αA(66-80) were found to be disassembled. CONCLUSION: In the present study, we are able to successfully demonstrate that EGCG efficiently blocks the aggregation of αA(66-80) peptide in a concentration-dependent manner. Furthermore, it is also evident that EGCG is able to disaggregate pre-formed αA(66-80) aggregates. The study suggests that EGCG can be a potential molecule that can prevent the initiation of cataract as well as be helpful in the disease reversal.


Subject(s)
Antioxidants/pharmacology , Cataract/prevention & control , Catechin/analogs & derivatives , Peptide Fragments/metabolism , Protein Aggregation, Pathological/drug therapy , Tea/chemistry , alpha-Crystallin A Chain/metabolism , Amino Acid Sequence , Amyloid/metabolism , Cataract/metabolism , Catechin/pharmacology , Dose-Response Relationship, Drug , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Molecular Sequence Data , Protein Aggregation, Pathological/metabolism , alpha-Crystallin A Chain/ultrastructure
7.
J Pept Sci ; 22(4): 201-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27028204

ABSTRACT

Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for ß-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aß. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aß.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cocos/chemistry , Endosperm/chemistry , Plant Proteins/chemistry , Amyloid/chemistry , Amyloid/ultrastructure , Anti-Infective Agents/chemistry , Protein Aggregates , Protein Structure, Quaternary , Protein Structure, Secondary
8.
Protein Pept Lett ; 22(1): 87-93, 2015.
Article in English | MEDLINE | ID: mdl-25267253

ABSTRACT

Accumulation of ordered protein aggregates (or amyloids) represents a hallmark of many diseases (e.g., Alzheimer's disease, type II diabetes, Parkinson's diseases etc.), results from intermolecular association of partially unfolded proteins/ peptides. Such associations usually take place in highly crowded conditions. The aggregates, which are formed under in vitro and in vivo conditions exhibit substantial variations in their structure and function. Such heterogeneities in amyloids might arise due to macromolecular crowding that is usually omitted under in vitro conditions. The current study is an attempt to assess the effects of macromolecular crowding on amyloid formation using a model amyloidogenic peptide. The sequence of the peptide was derived from C-terminal region (RATQIPSYKKLIMY) of PAP(248-286), which naturally occurs in human semen as amyloid aggregates and is known for boosting HIV infectivity. This model peptide forms sedimentable and fibrillar aggregates in aqueous buffer and shows the characteristic features of amyloids. In the presence of macromolecular crowders the morphological features of the amyloids are significantly altered and resulted in the formation of shorter amyloid aggregates. The current study assumes the hypothesis that macromolecular crowding in the biological system favours formation of heterogeneous classes of aggregates and each of them might differ in their biophysical and biological properties.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Peptides/chemistry , Protein Aggregation, Pathological , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Biophysical Phenomena , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Humans , Macromolecular Substances/chemistry , Models, Chemical , Parkinson Disease/genetics , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...