Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1276: 341589, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573093

ABSTRACT

Routine monitoring of inorganic arsenic in groundwater using sensitive, reliable, easy-to-use and affordable analytical methods is integral to identifying sources, and delivering appropriate remediation solutions, to the widespread global issue of arsenic pollution. Voltammetry has many advantages over other analytical techniques, but the low electroactivity of arsenic(V) requires the use of either reducing agents or relatively strong acidic conditions, which both complicate the analytical procedures, and require more complex material handling by skilled operators. Here, we present the voltammetric determination of total inorganic arsenic in conditions of near-neutral pH using a new commercially available 25 µm diameter gold microwire (called the Gold Wirebond), which is described here for the first time. The method is based on the addition of low concentrations of permanganate (10 µM MnO4-) which fulfils two roles: (1) to ensure that all inorganic arsenic is present as arsenate by chemically oxidising arsenite to arsenate and, (2) to provide a source of manganese allowing the sensitive detection of arsenate by anodic stripping voltammetry at a gold electrode. Tests were carried out in synthetic solutions of various pH (ranging from 4.7 to 9) in presence/absence of chloride. The best response was obtained in 0.25 M chloride-containing acetate buffer resulting in analytical parameters (limit of detection of 0.28 µg L-1 for 10 s deposition time, linear range up to 20 µg L-1 and a sensitivity of 63.5 nA ppb-1. s-1) better than those obtained in acidic conditions. We used this new method to measure arsenic concentrations in contrasting groundwaters: the reducing, arsenite-rich groundwaters of India (West Bengal and Bihar regions) and the oxidising, arsenate-rich groundwaters of Mexico (Guanajuato region). Very good agreement was obtained in all groundwaters with arsenic concentrations measured by inductively coupled plasma-mass spectrometry (slope = +1.029, R2 = 0.99). The voltammetric method is sensitive, faster than other voltammetric techniques for detection of arsenic (typically 10 min per sample including triplicate measurements and 2 standard additions), easier to implement than previous methods (no acidic conditions, no chemical reduction required, reproducible sensor, can be used by non-voltammetric experts) and could enable cheaper groundwater surveying campaigns with in-the-field analysis for quick data reporting, even in remote communities.

2.
Environ Sci Pollut Res Int ; 29(18): 27443-27459, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34982385

ABSTRACT

Fast growing arsenic menace is causing serious health hazards in Bihar, India, with an estimated 10 million people at risk. The exposed population is often unaware of the problem, which only amplifies the burden of arsenic health effects. In the present study, we have assessed the current situation of arsenic exposure in Chapar village of Samastipur district, Bihar. The health of the inhabitants was assessed and correlated with (1) arsenic concentrations in the groundwater of individual wells and (2) arsenic concentration found in their hair and urine. Altogether, 113 inhabitants were assessed, and 113 hair, urine and groundwater samples were collected. The health study reveals that the exposure to arsenic has caused serious health hazard amongst the exposed population with pronounced skin manifestations, loss of appetite, anaemia, constipation, diarrhoea, general body weakness, raised blood pressure, breathlessness, diabetes, mental disabilities, diabetes, lumps in the body and few cancer incidences. It was found that 52% of the total collected groundwater samples had arsenic levels higher than the WHO limit of 10 µg/l (with a maximum arsenic concentration of 1212 µg/l) and the reduced arsenite was the predominant form in samples tested for speciation (N = 19). In the case of hair samples, 29% of the samples had arsenic concentrations higher than the permissible limit of 0.2 mg/kg, with a maximum arsenic concentration of 46 µg/l, while in 20% exposed population, there was significant arsenic contamination in urine samples > 50 µg/l. In Chapar village, the probability of carcinogenic-related risk in the exposed population consuming arsenic contaminated water is 100% for children, 99.1% for females and 97.3% for male subjects. The assessment report shared to the government enabled the village population to receive two arsenic filter units. These units are currently operational and catering 250 households providing arsenic-free water through piped water scheme. This study therefore identified a significant solution for this arsenic-exposed population.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Child , Cost of Illness , Female , Humans , India/epidemiology , Male , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...