Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 30(4): 045702, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30460927

ABSTRACT

Rare earth (RE) ions doped in Si-based materials, compatible with Si technology, are promising compounds with regards to optical communication and energy conversion. In this article, we show the emission properties of Nd-doped Si-rich Si oxynitride (Nd-SRSON) films, and their dependence on the dangling bond density and the nature of the sensitizer. These films were prepared by reactive magnetron sputtering and post-annealing. The film composition, microstructure, and emission properties were investigated as a function of deposition parameters and annealing temperatures. Both Fourier transform infrared (FTIR) and ellipsometry spectroscopy measurements have confirmed that the sample composition (Si/N ratio) can be carefully tuned by varying the ratio of reactive nitrogen to argon in the sputtering plasma. Moreover, FTIR and x-ray photoelectron spectroscopy measurements demonstrate the existence of both nitrogen and oxygen dangling bonds (N· and O·) in as-deposited samples. These dangling bonds were passivated during annealing. Under non-resonant excitation at 488 nm, the films exhibit a significant photoluminescence (PL) signal from Nd3+ ions demonstrating the occurrence of an effective sensitization of Nd3+ ions in the host matrix. Both PL excitation and ellipsometry results (the energy band gap from new amorphous model) exclude the sensitization by an exciton with energy over the band gap, whereas the presence of Si agglomerates, at the atomic scale, have been identified as effective sensitizers towards Nd3+ ions. This work not only provides knowledge to optimize Si-based materials for favorable emission properties, but also, presents a universal methodology to investigate the nature of sensitizers for RE emitters. This allows one to find correlations between composition, microstructure, and emission properties.

2.
Nanotechnology ; 29(39): 395204, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29972683

ABSTRACT

In this work, an atomic layer deposited (ALD) Al2O3 ultrathin layer was introduced to passivate the ZnO-nanoparticle (NP) buffer layer of inverted polymer solar cells (PSCs) based on P3HT:PCBM. The surface morphology of the ZnO-NP/Al2O3 interface was systematically analyzed by using a variety of tools, in particular transmission electron microscopy (TEM), evidencing a conformal ALD-Al2O3 deposition. The thickness of the Al2O3 layers was optimized at the nanoscale to boost electron transport of the ZnO-NP layer, which can be attributed to the suppression of oxygen vacancy defects in ZnO-NPs confirmed by photoluminescence measurement. The optimal inverted PSCs passivated by ALD-Al2O3 exhibited an ∼22% higher power conversion efficiency than the control devices with a pristine ZnO-NP buffer layer. The employment of the ALD-Al2O3 passivation layer with precisely controlled thickness provides a promising approach to develop high efficiency PSCs with novel polymer materials.

3.
Nanotechnology ; 29(28): 285403, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29697055

ABSTRACT

This paper describes an original design leading to the field effect passivation of Si n+-p junctions. Ordered Ag nanoparticle (Ag-NP) arrays with optimal size and coverage fabricated by means of nanosphere lithography and thermal evaporation, were embedded in ultrathin-Al2O3/SiN x :H stacks on the top of implanted Si n+-p junctions, to achieve effective surface passivation. One way to characterize surface passivation is to use photocurrent, sensitive to recombination centers. We evidenced an improvement of photocurrent by a factor of 5 with the presence of Ag NPs. Finite-difference time-domain (FDTD) simulations combining with semi-quantitative calculations demonstrated that such gain was mainly due to the enhanced field effect passivation through the depleted region associated with the Ag-NPs/Si Schottky contacts.

4.
Nanoscale ; 10(8): 3823-3837, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29412204

ABSTRACT

Ce-Doped SiOxNy films are deposited by magnetron reactive sputtering from a CeO2 target under a nitrogen reactive gas atmosphere. Visible photoluminescence measurements regarding the nitrogen gas flow reveal a large emission band centered at 450 nm for a sample deposited under a 2 sccm flow. Special attention is paid to the origin of such an emission at high nitrogen concentration. Different emitting centers are suggested in Ce doped SiOxNy films (e.g. band tails, CeO2, Ce clusters, Ce3+ ions), with different activation scenarios to explain the luminescence. X-ray photoelectron spectroscopy (XPS) reveals the exclusive presence of Ce3+ ions whatever the nitrogen or Ce concentrations, while transmission electron microscopy (TEM) shows no clusters or silicates upon high temperature annealing. With the help of photoluminescence excitation spectroscopy (PLE), a wide excitation range from 250 nm up to 400 nm is revealed and various excitations of Ce3+ ions are proposed involving direct or indirect mechanisms. Nitrogen concentration plays an important role in Ce3+ emission by modifying Ce surroundings, reducing the Si phase volume in SiOxNy and causing a nephelauxetic effect. Taking into account the optimized nitrogen growth parameters, the Ce concentration is analyzed as a new parameter. Under UV excitation, a strong emission is visible to the naked eye with high Ce3+ concentration (6 at%). No saturation of the photoluminescence intensity is observed, confirming again the lack of Ce cluster or silicate phase formation due to the nitrogen presence.

5.
Nanotechnology ; 28(11): 115710, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28140358

ABSTRACT

Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the 'out-of-phase' stretching vibration mode of the Si-O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth clusterization than its silicon oxide counterpart. Analysis of time-resolved PL intensity versus T A showed the impact of Tb clustering on decay times, in agreement with the TEM observations. Finally, PL and PL excitation (PLE) experiments and comparison of the related spectra between undoped and Tb-doped samples were carried out to investigate the impact of the band tails on the excitation mechanism of Tb3+ ions.

6.
Ultramicroscopy ; 132: 290-4, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23286962

ABSTRACT

Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO2 multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO2 multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO2 layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures.

7.
Nanoscale Res Lett ; 6(1): 106, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21711642

ABSTRACT

The influence of hydrogen rate on optical properties of silicon nanocrystals deposited by sputtering method was studied by means of time-resolved photoluminescence spectroscopy as well as transmission and reflection measurements. It was found that photoluminescence decay is strongly non-single exponential and can be described by the stretched exponential function. It was also shown that effective decay rate probability density function may be recovered by means of Stehfest algorithm. Moreover, it was proposed that the observed broadening of obtained decay rate distributions reflects the disorder in the samples.

8.
J Nanosci Nanotechnol ; 10(9): 5648-52, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133086

ABSTRACT

Silicon reach-silicon-oxide (SRSO) film containing silicon nanoclusters was obtained by the reactive magnetron sputtering. Photoluminescence (PL) spectra were measured as a function of temperature at different excitation wavelengths and additionally at different excitation power densities. Obtained PL spectra characterize by two emission bands centered at 1.6 and 2.4 eV. For these bands, temperature behaviour of PL intensities strongly differs but clearly correlate each other. Moreover, it has been observed that obtained PL intensities versus temperature exhibit a strong dependence on the excitation power density in the low temperature range.

9.
Nanotechnology ; 21(28): 285707, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20585152

ABSTRACT

The microstructure and optical properties of HfSiO films fabricated by RF magnetron sputtering were studied by means of x-ray diffraction, transmission electron microscopy, spectroscopic ellipsometry and attenuated total reflection infrared spectroscopy versus annealing treatment. It was shown that silicon incorporation in the HfO(2) matrix plays an important role in the structure stability of the layers. Thus, the increase of the annealing temperature up to 1000 degrees C did not lead to the crystallization of the films. The evolution of the chemical composition as well as a decrease of the density of the films was attributed to the phase separation of HfSiO on HfO(2) and SiO(2) phases in the film. An annealing at 1000-1100 degrees C results in the formation of the multilayer Si-rich/Hf-rich structure and was explained by a surface-directed spinodal decomposition. The formation of the stable tetragonal structure of HfO(2) phase was shown upon annealing treatment at 1100 degrees C.

10.
Opt Express ; 18(3): 2230-5, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174051

ABSTRACT

This study reports the estimation of the inverted Er fraction in a system of Er doped silicon oxide sensitized by Si nanoclusters, made by magnetron sputtering. Electroluminescence was obtained from the sensitized erbium, with a power efficiency of 10(-2)%. By estimating the density of Er ions that are in the first excited state, we find that up to 20% of the total Er concentration is inverted in the best device, which is one order of magnitude higher than that achieved by optical pumping of similar materials.

11.
Nanotechnology ; 21(9): 095704, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20124661

ABSTRACT

Structural and chemical properties of Hf-based layers fabricated by RF magnetron sputtering were studied by means of x-ray diffraction, transmission electron microscopy and attenuated total reflection infrared spectroscopy versus the deposition parameters and annealing treatment. The deposition and post-deposition conditions allow us to control the temperature of the amorphous-crystalline phase transition of HfO(2)-based layers. It was found that silicon incorporation in an HfO(2) matrix plays the main role in the structural stability of the layers. It allows us not only to decrease the thickness of the film/substrate interfacial layer to 1 nm, but also to conserve the amorphous structure of the layers after an annealing treatment up to 900-1000 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...