Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Basic Res Cardiol ; 119(3): 435-451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499702

ABSTRACT

Myocardial infarction (MI) is a serious acute cardiovascular syndrome that causes myocardial injury due to blood flow obstruction to a specific myocardial area. Under ischemic-reperfusion settings, a burst of reactive oxygen species is generated, leading to redox imbalance that could be attributed to several molecules, including myoglobin. Myoglobin is dynamic and exhibits various oxidation-reduction states that have been an early subject of attention in the food industry, specifically for meat consumers. However, rarely if ever have the myoglobin optical properties been used to measure the severity of MI. In the current study, we develop a novel imaging pipeline that integrates tissue clearing, confocal and light sheet fluorescence microscopy, combined with imaging analysis, and processing tools to investigate and characterize the oxidation-reduction states of myoglobin in the ischemic area of the cleared myocardium post-MI. Using spectral imaging, we have characterized the endogenous fluorescence of the myocardium and demonstrated that it is partly composed by fluorescence of myoglobin. Under ischemia-reperfusion experimental settings, we report that the infarcted myocardium spectral signature is similar to that of oxidized myoglobin signal that peaks 3 h post-reperfusion and decreases with cardioprotection. The infarct size assessed by oxidation-reduction imaging at 3 h post-reperfusion was correlated to the one estimated with late gadolinium enhancement MRI at 24 h post-reperfusion. In conclusion, this original work suggests that the redox state of myoglobin can be used as a promising imaging biomarker for characterizing and estimating the size of the MI during early phases of reperfusion.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Myocardium , Myoglobin , Oxidation-Reduction , Myoglobin/metabolism , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/pathology , Male , Microscopy, Fluorescence , Disease Models, Animal , Microscopy, Confocal
2.
PLoS One ; 18(6): e0285670, 2023.
Article in English | MEDLINE | ID: mdl-37294746

ABSTRACT

Genetically encoded biosensors based on fluorescent proteins (FPs) are widely used to monitor dynamics and sub-cellular spatial distribution of calcium ion (Ca2+) fluxes and their role in intracellular signaling pathways. The development of different mutations in the Ca2+-sensitive elements of the cameleon probes has allowed sensitive range of Ca2+ measurements in almost all cellular compartments. Region of the endoplasmic reticulum (ER) tethered to mitochondria, named as the mitochondrial-associated membranes (MAMs), has received an extended attention since the last 5 years. Indeed, as MAMs are essential for calcium homeostasis and mitochondrial function, molecular tools have been developed to assess quantitatively Ca2+ levels in the MAMs. However, sensitivity of the first generation Ca2+ biosensors on the surface of the outer-mitochondrial membrane (OMM) do not allow to measure µM or sub-µM changes in Ca2+ concentration which prevents to measure the native activity (unstimulated exogenously) of endogenous channels. In this study, we assembled a new ratiometric highly sensitive Ca2+ biosensor expressed on the surface of the outer-mitochondrial membrane (OMM). It allows the detection of smaller differences than the previous biosensor in or at proximity of the MAMs. Noteworthy, we demonstrated that IP3-receptors have an endogenous activity which participate to the Ca2+ leak channel on the surface of the OMM during hypoxia or when SERCA activity is blocked.


Subject(s)
Calcium , Mitochondria , Calcium/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Calcium, Dietary/metabolism , Calcium Signaling
3.
Nat Commun ; 14(1): 3346, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291092

ABSTRACT

Despite advances in cardioprotection, new therapeutic strategies capable of preventing ischemia-reperfusion injury of patients are still needed. Here, we discover that sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2) phosphorylation at serine 663 is a clinical and pathophysiological event of cardiac function. Indeed, the phosphorylation level of SERCA2 at serine 663 is increased in ischemic hearts of patients and mouse. Analyses on different human cell lines indicate that preventing serine 663 phosphorylation significantly increases SERCA2 activity and protects against cell death, by counteracting cytosolic and mitochondrial Ca2+ overload. By identifying the phosphorylation level of SERCA2 at serine 663 as an essential regulator of SERCA2 activity, Ca2+ homeostasis and infarct size, these data contribute to a more comprehensive understanding of the excitation/contraction coupling of cardiomyocytes and establish the pathophysiological role and the therapeutic potential of SERCA2 modulation in acute myocardial infarction, based on the hotspot phosphorylation level of SERCA2 at serine 663 residue.


Subject(s)
Myocardial Infarction , Myocardium , Animals , Humans , Mice , Calcium/metabolism , Homeostasis , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
4.
Biomedicines ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009382

ABSTRACT

This study focused on a coagulation assessment based on the novel technique of blood-impedance-magnitude measurement. With the impedance characterization of recalcified human blood, it was possible to identify two significative biomarkers (i.e., measurable indicators) related to fibrin formation (1st marker) and clot retraction (2nd marker). The confocal microscopy of clotting blood provided a complete visual analysis of all the events occurring during coagulation, validating the significance of the impedance biomarkers. By analyzing the impedance phase angle (Φ) of blood during coagulation, as well as those of the clot and serum expelled after retraction, it was possible to further clarify the origin of the 2nd marker. Finally, an impedance-magnitude analysis and a rotational thromboelastometry test (ROTEM®) were simultaneously performed on blood sampled from the same donor; the results pointed out that the 1st marker was related to clotting time. The developed technique gives rise to a comprehensive and evolutive insight into coagulation, making it possible to progressively follow the whole process in real time. Moreover, this approach allows coagulation to be tested on any materials' surface, laying the ground for new studies related to contact coagulation, meaning, thrombosis occurring on artificial implants. In a near future, impedance spectroscopy could be employed in the material characterization of cardiovascular prostheses whose properties could be monitored in situ and/or online using effective biomarkers.

5.
Cells ; 11(6)2022 03 14.
Article in English | MEDLINE | ID: mdl-35326440

ABSTRACT

Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.


Subject(s)
Brain , Mitochondria, Heart , Animals , Homeostasis , Mice , Reactive Oxygen Species , Respiration
6.
Cells ; 9(12)2020 11 25.
Article in English | MEDLINE | ID: mdl-33255741

ABSTRACT

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Subject(s)
Adenine Nucleotide Translocator 2/metabolism , Adenosine Triphosphate/metabolism , Hypoxia/metabolism , Mitochondria/metabolism , Animals , Calcium/metabolism , Cell Death/physiology , Cell Line , Membrane Potential, Mitochondrial/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Myocytes, Cardiac/metabolism , Rats
7.
Cells ; 9(5)2020 05 25.
Article in English | MEDLINE | ID: mdl-32466308

ABSTRACT

During myocardial infarction, dysregulation of Ca2+ homeostasis between the reticulum, mitochondria, and cytosol occurs in cardiomyocytes and leads to cell death. Ca2+ leak channels are thought to be key regulators of the reticular Ca2+ homeostasis and cell survival. The present study aimed to determine whether a particular reticular Ca2+ leak channel, the translocon, also known as translocation channel, could be a relevant target against ischemia/reperfusion-mediated heart injury. To achieve this objective, we first used an intramyocardial adenoviral strategy to express biosensors in order to assess Ca2+ variations in freshly isolated adult mouse cardiomyocytes to show that translocon is a functional reticular Ca2+ leak channel. Interestingly, translocon activation by puromycin mobilized a ryanodine receptor (RyR)-independent reticular Ca2+ pool and did not affect the excitation-concentration coupling. Second, puromycin pretreatment decreased mitochondrial Ca2+ content and slowed down the mitochondrial permeability transition pore (mPTP) opening and the rate of cytosolic Ca2+ increase during hypoxia. Finally, this translocon pre-activation also protected cardiomyocytes after in vitro hypoxia reoxygenation and reduced infarct size in mice submitted to in vivo ischemia-reperfusion. Altogether, our report emphasizes the role of translocon in cardioprotection and highlights a new paradigm in cardioprotection by functionally uncoupling the RyR-dependent Ca2+ stores and translocon-dependent Ca2+ stores.


Subject(s)
Calcium/metabolism , Cardiotonic Agents/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , SEC Translocation Channels/metabolism , Animals , Excitation Contraction Coupling , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Puromycin/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism
8.
Cells ; 8(11)2019 10 25.
Article in English | MEDLINE | ID: mdl-31731523

ABSTRACT

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Subject(s)
Hepatocytes/metabolism , Insulin Resistance/physiology , Mitochondrial Membranes/metabolism , Animals , Cell Line, Tumor , Cyclic GMP-Dependent Protein Kinases/metabolism , Endoplasmic Reticulum/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III , Primary Cell Culture , Rats , Signal Transduction/drug effects , Soluble Guanylyl Cyclase/metabolism , Wortmannin/metabolism
9.
Diabetes ; 68(9): 1778-1794, 2019 09.
Article in English | MEDLINE | ID: mdl-31175102

ABSTRACT

Glucotoxicity-induced ß-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. The role of MAMs in ß-cells is still largely unknown, and their implication in glucotoxicity-associated ß-cell dysfunction remains to be defined. Here, we report that acute glucose treatment stimulated ER-mitochondria interactions and calcium (Ca2+) exchange in INS-1E cells, whereas disruption of MAMs altered glucose-stimulated insulin secretion (GSIS). Conversely, chronic incubations with high glucose of either INS-1E cells or human pancreatic islets altered GSIS and concomitantly reduced ER Ca2+ store, increased basal mitochondrial Ca2+, and reduced ATP-stimulated ER-mitochondria Ca2+ exchanges, despite an increase of organelle interactions. Furthermore, glucotoxicity-induced perturbations of Ca2+ signaling are associated with ER stress, altered mitochondrial respiration, and mitochondria fragmentation, and these organelle stresses may participate in increased organelle tethering as a protective mechanism. Last, sustained induction of ER-mitochondria interactions using a linker reduced organelle Ca2+ exchange, induced mitochondrial fission, and altered GSIS. Therefore, dynamic organelle coupling participates in GSIS in ß-cells, and over time, disruption of organelle Ca2+ exchange might be a novel mechanism contributing to glucotoxicity-induced ß-cell dysfunction.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/drug effects , Glucose/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Mitochondria/drug effects , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Humans , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Rats
10.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 981-994, 2018 07.
Article in English | MEDLINE | ID: mdl-29678654

ABSTRACT

Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5­triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Prostatic Neoplasms/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Aged , Alternative Splicing , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prostate/cytology , Prostate/metabolism , Prostatic Neoplasms/genetics , Protein Domains , TRPM Cation Channels/chemistry
11.
Front Immunol ; 9: 3170, 2018.
Article in English | MEDLINE | ID: mdl-30693003

ABSTRACT

Muscle inflammation as in idiopathic inflammatory myopathies (IIM) leads to muscle weakness, mononuclear cell infiltration, and myofiber dysfunction affecting calcium channels. The effects of interleukin-17A (IL-17) and tumor necrosis factor-α (TNFα) on inflammation and calcium changes were investigated in human myoblasts. Human myoblasts were exposed to IL-17 and/or TNFα with/without store-operated Ca2+ entry (SOCE) inhibitors (2-ABP or BTP2). For co-cultures, peripheral blood mononuclear cells (PBMC) from healthy donors activated or not with phytohemagglutinin (PHA) were added to myoblasts at a 5:1 ratio. IL-17 and TNFα induced in synergy CCL20 and IL-6 production by myoblasts (>14-fold). PBMC-myoblast co-cultures enhanced CCL20 and IL-6 production in the presence or not of PHA compared to PBMC or myoblast monocultures. Anti-IL-17 and/or anti-TNFα decreased the production of IL-6 in co-cultures (p < 0.05). Transwell system that prevents direct cell-cell contact reduced CCL20 (p < 0.01) but not IL-6 secretion. IL-17 and/or TNFα increased the level of the ER stress marker Grp78, mitochondrial ROS and promoted SOCE activation by 2-fold (p < 0.01) in isolated myoblasts. SOCE inhibitors reduced the IL-6 production induced by IL-17/TNFα. Therefore, muscle inflammation induced by IL-17 and/or TNFα may increase muscle cell dysfunction, which, in turn, increased inflammation. Such close interplay between immune and non-immune mechanisms may drive and increase muscle inflammation and weakness.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Interleukin-17/metabolism , Myoblasts/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cell Communication , Cells, Cultured , Chemokine CCL20/biosynthesis , Endoplasmic Reticulum Chaperone BiP , Humans , Interleukin-17/pharmacology , Interleukin-6/biosynthesis , Leukocytes, Mononuclear/metabolism , Mitochondria, Muscle/metabolism , Molecular Imaging , Myoblasts/drug effects , Oxidative Stress , Tumor Necrosis Factor-alpha/pharmacology
12.
Sci Data ; 2: 150054, 2015.
Article in English | MEDLINE | ID: mdl-26504523

ABSTRACT

French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001-2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the 'calibration and validation' of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions.

13.
J Biol Chem ; 288(18): 12459-68, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23508951

ABSTRACT

T-type Ca(2+) channel inhibitors protect hippocampal CA1 neurons from delayed death after global ischemia in rats, suggesting that Cav3.1, Cav3.2, or Cav3.3 channels generate cytotoxic Ca(2+) elevations during anoxia. To test this hypothesis, we measured the Ca(2+) concentration changes evoked by oxygen and glucose deprivation (OGD) in the cytosol and in the mitochondria of PC12 cells. OGD evoked long-lasting cytosolic Ca(2+) elevations that were reduced by Cav3.2 inhibition (50 µm Ni(2+)) and Cav3.1/Cav3.2 silencing and potentiated by Cav3.2 overexpression. The kinetics of the sustained cytosolic Ca(2+) elevations occurring during OGD directly correlated to the extent of cell death measured 20 h after reoxygenation, which was decreased by Ni(2+) and Cav3.1/Cav3.2 silencing and increased by Cav3.2 overexpression. Ni(2+) and Cav3.1/Cav3.2 silencing delayed the decline of cellular ATP during OGD, consistent with a reduction in the Ca(2+) load actively extruded by plasma membrane Ca(2+) pumps. The cytosolic Ca(2+) elevations were paralleled by mitochondrial Ca(2+) elevations that were also increased by Cav3.2 overexpression and decreased by Ni(2+) but not by Cav3.1/Cav3.2 silencing. Overexpression and silencing of the mitochondrial Ca(2+) uniporter, the major mitochondrial Ca(2+) uptake protein, revealed that the cytotoxicity was correlated to the amplitude of the mitochondrial, rather than the cytosolic, Ca(2+) elevations. Selective activation of T-type Ca(2+) channels evoked both cytosolic and mitochondrial Ca(2+) elevations, but only the mitochondrial responses were reduced by Cav3.1/Cav3.2 silencing. We conclude that the opening of Cav3.2 channels during ischemia contribute to the entry of Ca(2+) ions that are transmitted to mitochondria, resulting in a deleterious mitochondrial Ca(2+) overload.


Subject(s)
Calcium Channels, T-Type/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Cytoplasm/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Calcium Channels, T-Type/genetics , Cell Hypoxia , Cell Membrane/genetics , Cytoplasm/genetics , Gene Silencing , Mitochondria/genetics , PC12 Cells , Rats
14.
Biochimie ; 93(12): 2060-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21846486

ABSTRACT

Mitochondria sense and shape cytosolic Ca(2+) signals by taking up and subsequently releasing Ca(2+) ions during physiological and pathological Ca(2+) elevations. Sustained elevations in the mitochondrial matrix Ca(2+) concentration are increasingly recognized as a defining feature of the intracellular cascade of lethal events that occur in neurons during cerebral ischemia. Here, we review the recently identified transport proteins that mediate the fluxes of Ca(2+) across mitochondria and discuss the implication of the permeability transition pore in decoding the abnormally sustained mitochondrial Ca(2+) elevations that occur during cerebral ischemia.


Subject(s)
Brain Ischemia/metabolism , Calcium/metabolism , Cell Death , Mitochondria/metabolism , Neurons/metabolism , Animals , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Calcium-Binding Proteins , Cell Hypoxia , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...