Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 61: 102641, 2023 05.
Article in English | MEDLINE | ID: mdl-36842241

ABSTRACT

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Subject(s)
Chitosan , Selenium , Histones/metabolism , Methylation , Selenium/metabolism , Lysine/metabolism , S-Adenosylhomocysteine/metabolism , Antioxidants/metabolism , Chitosan/metabolism , Histone-Lysine N-Methyltransferase/genetics
2.
Front Med (Lausanne) ; 8: 698167, 2021.
Article in English | MEDLINE | ID: mdl-34568365

ABSTRACT

Thyroid cancer is the most common endocrine cancer. There is no systematic screening for such cancer, and the current challenge is to find potential biomarkers to facilitate an early diagnosis. Copper (Cu) and zinc (Zn) are essential micronutrients involved in the proper functioning of the thyroid gland, and changes in their concentrations have been observed in the development of cancer. Previous studies have highlighted the potential 65Cu/63Cu ratio (δ65Cu) to be a cancer biomarker. This study tests its sensitivity on plasma samples (n = 46) of Algerian patients with papillary thyroid carcinoma and a set of corresponding biopsies (n = 11). The δ65Cu ratio in blood and tumor samples was determined using multi collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), and their corresponding Cu and Zn plasma total concentrations using total reflection X-ray fluorescence (TXRF). Plasma concentrations of Cu were significantly higher (1346.1 ± 328.3 vs. 1060.5 ± 216.1 µg/L, p < 0.0001), and Zn significantly lower (942.1 ± 205.2 vs. 1027.9 ± 151.4 µg/L, p < 0.05) in thyroid cancer patients as compared to healthy controls (n = 50). Accordingly, the Cu/Zn ratio was significantly different between patients and controls (1.5 ± 0.4 vs. 1.0 ± 0.3, p < 0.0001). Furthermore, the δ65Cu plasma levels of patients were significantly lower than healthy controls (p < 0.0001), whereas thyroid tumor tissues presented high δ65Cu values. These results support the hypothesis that Cu isotopes and plasma trace elements may serve as suitable biomarkers of thyroid cancer diagnosis.

3.
Nanomedicine ; 29: 102258, 2020 10.
Article in English | MEDLINE | ID: mdl-32615338

ABSTRACT

High dose selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show any chemotherapeutic value of selenium at safe and tolerated doses (<90 µg/day). To enable the successful exploitation of selenium for cancer treatment, we evaluated inorganic selenium nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both SKOV-3 and OVCAR-3 ovarian cancer cell types SeNP treatment resulted in significant cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metastatic potential. The beneficial effects of SeNPs on ovarian cancer cell death appear cell type dependent, and due to their low in vivo toxicity offer an exciting opportunity for future cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Metal Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomechanical Phenomena , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Selenium/chemistry , Selenium/pharmacology
4.
Zoo Biol ; 38(4): 371-383, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31257640

ABSTRACT

The longevity of zoo animals is increasing due to continuous improvement in husbandry and veterinary medicine. However, increasing age is correlated to a higher prevalence of neoplasia. Despite tremendous improvement in diagnoses and monitoring capacities, cancers are still a challenge for veterinarians within the global zoo community. The recent use of copper isotopes as biomarkers for neoplasia in both human and veterinary medicine is a promising and cost-effective diagnostic tool. Two hundred and twenty-nine serum samples from 10 different species of wild felids under human care were processed through mass spectrometry to determine the ratio of heavy and light copper isotopes (65 Cu/63 Cu). The results of this preliminary study exhibit an important variability between felid species, with a ratio ranging between -1.71 and 0.63. Additionally, copper isotopes seem to be a promising diagnostic tool in monitoring cancer in wild animals, as in human medicine, where the isotopic ratio decreases significantly with time in the presence of a tumor.


Subject(s)
Copper/blood , Felidae/blood , Neoplasms/veterinary , Animals , Biomarkers, Tumor , Female , Male , Neoplasms/blood , Neoplasms/diagnosis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...