Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 108: 102557, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905774

ABSTRACT

MPPs are trained in the branches of physics associated with the practice of medicine. Possessing a solid scientific background and technical skills, MPPs are well suited to play a leading role within each stage of a medical device life cycle. The various stages of the life cycle of a medical device include establishment of requirements with use-case assessment, investment planning, procurement of medical devices, acceptance testing especially regarding safety and performance, quality management, effective and safe use and maintenance, user training, interfacing with IT systems, and safe decommissioning and removal of the medical devices. Acting as an expert within the clinical staff of a healthcare organisation, the MPP can play an important role to achieve a balanced life cycle management of medical devices. Given that the functioning of medical devices and their clinical application in routine clinical practice and research is heavily physics and engineering based, the MPP is strongly associated with the hard science aspects and advanced clinical applications of medical devices and associated physical agents. Indeed, this is reflected in the mission statement of MPP professionals [1]. PURPOSE: The life cycle management of medical devices is described as well as the procedures involved. These procedures are performed by multi-disciplinary teams within a healthcare environment. The task of this workgroup was focused on clarifying and elaborating the role of the Medical Physicist and Medical Physics Expert - here collectively referred to as the Medical Physics Professional (MPP) - within these multi-disciplinary teams. This policy statement describes the role and competences of MPPs in every stage of a medical device life cycle. If MPPs are an integral part of these multi-disciplinary teams, the effective use, safety, and sustainability of the investment is likely to improve as well as the overall service quality delivered by the medical device during its life cycle. It leads to better health care quality and reduced costs. Furthermore, it gives MPPs a stronger position in health care organisations throughout Europe.


Subject(s)
Medicine , Physics , Humans , Europe , Quality of Health Care , Policy , Health Physics/education
2.
Temperature (Austin) ; 9(3): 274-291, 2022.
Article in English | MEDLINE | ID: mdl-36249710

ABSTRACT

In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this third paper, we conducted field experiments across nine countries to evaluate the efficacy of 61 meteorology-based TSIs for assessing the physiological strain experienced by individuals working in the heat. We monitored 372 experi-enced and acclimatized workers during 893 full work shifts. We continuously assessed core body temperature, mean skin temperature, and heart rate data together with pre/post urine specific gravity and color. The TSIs were evaluated against 17 published criteria covering physiological parameters, practicality, cost effectiveness, and health guidance issues. Simple meteorological parameters explained only a fraction of the variance in physiological heat strain (R2 = 0.016 to 0.427; p < 0.001), reflecting the importance of adopting more sophisticated TSIs. Nearly all TSIs correlated with mean skin temperature (98%), mean body temperature (97%), and heart rate (92%), while 66% of TSIs correlated with the magnitude of dehydration and 59% correlated with core body temperature (r = 0.031 to 0.602; p < 0.05). When evaluated against the 17 published criteria, the TSIs scored from 4.7 to 55.4% (max score = 100%). The indoor (55.4%) and outdoor (55.1%) Wet-Bulb Globe Temperature and the Universal Thermal Climate Index (51.7%) scored higher compared to other TSIs (4.7 to 42.0%). Therefore, these three TSIs have the highest potential to assess the physiological strain experienced by individuals working in the heat.

3.
Temperature (Austin) ; 9(3): 263-273, 2022.
Article in English | MEDLINE | ID: mdl-36211947

ABSTRACT

In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this second paper of the series, we identified the criteria to consider when adopting a TSI to protect individuals who work in the heat, and we weighed their relative importance using a Delphi exercise with 20 experts. Two Delphi iterations were adequate to reach consensus within the expert panel (Cronbach's α = 0.86) for a set of 17 criteria with varying weights that should be considered when adopting a TSI to protect individuals who work in the heat. These criteria considered physiological parameters such as core/skin/mean body temperature, heart rate, and hydration status, as well as practicality, cost effectiveness, and health guidance issues. The 17 criteria were distributed across three occupational health-and-safety pillars: (i) contribution to improving occupational health (55% of total importance), (ii) mitigation of worker physiological strain (35.5% of total importance), and (iii) cost-effectiveness (9.5% of total importance). Three criteria [(i) relationship of a TSI with core temperature, (ii) having categories indicating the level of heat stress experienced by workers, and (iii) using its heat stress categories to provide recommendations for occupational safety and health] were considered significantly more important when selecting a TSI for protecting individuals who work in the heat, accumulating 37.2 percentage points. These 17 criteria allow the validation and comparison of TSIs that presently exist as well as those that may be developed in the coming years.

4.
Med Lav ; 113(2): e2022016, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35481582

ABSTRACT

BACKGROUND: The electromagnetic spectrum spans over an enormous range from 0 up to more than 1020 Hz in the deep ionizing region, significant exposures exist in specific occupational environments. Between the ionizing and the electromagnetic fields (EMF) part of the spectrum, the 'optical radiation' (OR) region has specific properties. Comparative and concise evaluation enables action prioritization. METHODS: Following the transposition and implementation periods of the artificial optical radiation (AOR) and EMF European Directives, the Hellenic Ministry of Labour in collaboration with the Greek Atomic Energy Commission (EEAE) and the National Technical University of Athens, conducted thorough occupational exposure investigation in Greece. Using dedicated measuring equipment and procedures, the majority of EMF emitting installations in Greece and also AOR emitting installations including arc welding, lasers and PC monitors has been assessed. RESULTS: Measurement results from occupational settings reveal that it is the non-coherent metal arc welding AOR that can pose even sub-second overexposures. Rare EMF overexposures are manageable and EMF concern is not justified. Maintenance procedures demand proper attention. Preliminary laser safety assessment reveals OHS gaps and potential eye and skin hazards. Blue light exposure from computer monitors is well below safety limits. CONCLUSIONS: This electromagnetic spectrum risk assessment conducted in Greece enables the justification of the real occupational hazards, in this sense: i) EMF exposure assessment has to be concentrated to maintenance procedures; ii) AOR measuring setups are challenging and standardized measurement procedures are missing, and iii) AOR overexposures from arc welding pose significant eye and skin hazards.


Subject(s)
Occupational Exposure , Radiation Exposure , Electromagnetic Fields/adverse effects , Greece , Humans
5.
Tomography ; 7(3): 333-343, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34449739

ABSTRACT

Blood Oxygen Level Dependent (BOLD) is a commonly-used MR imaging technique in studying brain function. The BOLD signal can be strongly affected by specific sequence parameters, especially in small field strengths. Previous small-scale studies have investigated the effect of TE on BOLD contrast. This study evaluates the dependence of fMRI results on echo time (TE) during concurrent activation of the visual and motor cortex at 1.5 T in a larger sample of 21 healthy volunteers. The experiment was repeated using two different TE values (50 and 70 ms) in counterbalanced order. Furthermore, T2* measurements of the gray matter were performed. Results indicated that both peak beta value and number of voxels were significantly higher using TE = 70 than TE = 50 ms in primary motor, primary somatosensory and supplementary motor cortices (p < 0.007). In addition, the amplitude of activation in visual cortices and the dorsal premotor area was also higher using TE = 70 ms (p < 0.001). Gray matter T2* of the corresponding areas did not vary significantly. In conclusion, the optimal TE value (among the two studied) for visual and motor activity is 70 ms affecting both the amplitude and extent of regional hemodynamic activation.


Subject(s)
Motor Cortex , Neurochemistry , Visual Cortex , Humans , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Visual Cortex/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...