Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 363(6431)2019 03 08.
Article in English | MEDLINE | ID: mdl-30846569

ABSTRACT

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Subject(s)
Antibodies, Neutralizing/chemistry , Biomimetic Materials/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/prevention & control , Piperazines/pharmacology , Pyridines/pharmacology , Tetrazoles/pharmacology , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacokinetics , Bronchi/virology , Cells, Cultured , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Madin Darby Canine Kidney Cells , Mice , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Respiratory Mucosa/virology , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Viral Fusion Protein Inhibitors/administration & dosage , Viral Fusion Protein Inhibitors/pharmacokinetics
2.
Science ; 358(6362): 496-502, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28971971

ABSTRACT

Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.


Subject(s)
Antiviral Agents/chemistry , Drug Design , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/drug effects , Peptides, Cyclic/chemistry , Virus Internalization/drug effects , Animals , Antibodies, Neutralizing/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Complementarity Determining Regions/chemistry , Crystallography, X-Ray , Humans , Male , Mice , Mice, Inbred BALB C , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Protein Conformation
3.
Addict Biol ; 21(2): 234-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25307867

ABSTRACT

There are a number of approved therapeutics for the management of alcohol dependence, which might also convey the potential as smoking cessation aids. The present study investigated the effect of a few of these therapeutics and potential candidates (non-peptide vasopressin V1b antagonists) on the expression of nicotine-induced behavioral sensitization in Wistar rats. The following compounds were included in this evaluation: rimonabant, bupropion, topiramate, acamprosate, naltrexone, mecamylamine, nelivaptan (SSR-149415, V1b antagonist) and two novel V1b antagonists. Following the development of nicotine-induced locomotor sensitization and a withdrawal period, the expression of sensitization was assessed in the presence of one of the examined agents given 30 minutes prior to the nicotine challenge injection. Acamprosate, naltrexone, rimonabant, mecamylamine, nelivaptan and V1b antagonist 'compound 2' significantly antagonized the expression of nicotine-induced sensitization. Whereas topiramate showed a trend for effects, the V1b antagonist 'compound 1' did not show any significant effects. Bupropion failed to block sensitization but increased activity alone and was therefore tested in development and cross-sensitization studies. Taken together, these findings provide pre-clinical evidence that these molecules attenuated the expression of nicotine-induced sensitization and should be further investigated as putative treatments for nicotine addiction. Moreover, V1b antagonists should be further investigated as a potential novel smoking cessation aid.


Subject(s)
Motor Activity/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Tobacco Use Cessation Devices , Acamprosate , Analysis of Variance , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Bupropion/pharmacology , Dose-Response Relationship, Drug , Fructose/analogs & derivatives , Fructose/pharmacology , Indoles/pharmacology , Male , Naltrexone/pharmacology , Pyrrolidines/pharmacology , Rats, Wistar , Taurine/analogs & derivatives , Taurine/pharmacology , Topiramate
4.
Addict Biol ; 20(2): 248-58, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24251901

ABSTRACT

The present study focused on the evaluation of behavioral sensitization and cross-sensitization induced by nicotine and varenicline in rats. Furthermore, it examined the influence of varenicline, a partial alpha4beta2 nicotinic receptor agonist, on nicotine-induced sensitization. To assess the development of behavioral sensitization, rats were chronically treated with vehicle, varenicline (0.03-3.0 mg/kg), nicotine (0.4 mg/kg) or combinations for 5 days and locomotor activity was measured. The expression of sensitization was assessed following a withdrawal period (17-26 days). The present results confirmed previous data showing the development and expression of nicotine-induced sensitization of locomotor activity in the rat. Varenicline did not induce sensitization on its own. When varenicline and nicotine were repeatedly administered sequentially, varenicline blocked the development and expression of nicotine-induced sensitization. Acute varenicline blocked the expression of nicotine-induced sensitization in a dose-dependent manner. Acute varenicline did not significantly increase locomotor activity, nor did it attenuate nicotine-induced sensitization. However, varenicline did cross-sensitize to the effects of nicotine, and vice versa. The present study showed that varenicline produced a dose-dependent bidirectional cross-sensitization with nicotine. Taken together, these findings provide pre-clinical evidence that varenicline is able to attenuate the effects of nicotine, yet simultaneously 'substitutes' for the effects of nicotine in the rat. Longitudinal studies would be needed to see if similar effects are seen in the clinical setting, and whether such effects contribute to the actions of varenicline as a smoking cessation aid.


Subject(s)
Benzazepines/pharmacology , Motor Activity/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Quinoxalines/pharmacology , Animals , Rats , Smoking Cessation , Varenicline
5.
J Pharmacol Exp Ther ; 332(1): 190-201, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19828876

ABSTRACT

The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.1 nM), potent D(2) partial agonist activity (EC(50), 0.38 nM; E(max), 30%), and complete block of the serotonin transporter (IC(50), 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID(50), 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D(2) partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole's reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D(2) receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.


Subject(s)
Antidepressive Agents/pharmacology , Antipsychotic Agents/pharmacology , Benzoxazoles/pharmacology , Dopamine Agonists/pharmacology , Indenes/pharmacology , Receptors, Dopamine D2/agonists , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Antidepressive Agents/chemistry , Antipsychotic Agents/chemistry , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Benzoxazoles/chemistry , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Dopamine/metabolism , Dopamine Agonists/chemistry , Drug Evaluation, Preclinical , Humans , Indenes/chemistry , Male , Mice , Mice, Inbred Strains , Microdialysis , Motor Activity/drug effects , Protein Binding , Rats , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/metabolism , Serotonin 5-HT1 Receptor Antagonists , Serotonin 5-HT2 Receptor Antagonists , Selective Serotonin Reuptake Inhibitors/chemistry , Transfection
6.
Bioorg Med Chem Lett ; 20(3): 1084-9, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20031412

ABSTRACT

The synthesis and structure-activity relationship studies of imidazoles are described. The target compounds 6-20 represent a novel chemotype of potent and CB(2)/CB(1) selective cannabinoid CB(2) receptor antagonists/inverse agonists with very high binding efficiencies in combination with favourable logP and calculated polar surface area values. Compound 12 exhibited the highest CB(2) receptor affinity (K(i)=1.03 nM) in this series, as well as the highest CB(2)/CB(1) subtype selectivity (>9708-fold).


Subject(s)
Imidazoles/chemical synthesis , Imidazoles/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Animals , CHO Cells , Cannabinoids/antagonists & inhibitors , Cannabinoids/metabolism , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Protein Binding/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...