Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 297(4): 101093, 2021 10.
Article in English | MEDLINE | ID: mdl-34416236

ABSTRACT

Long-terminal repeat (LTR) retrotransposons are genetic elements that, like retroviruses, replicate by reverse transcription of an RNA intermediate into a complementary DNA (cDNA) that is next integrated into the host genome by their own integrase. The Ty1 LTR retrotransposon has proven to be a reliable working model to investigate retroelement integration site preference. However, the low yield of recombinant Ty1 integrase production reported so far has been a major obstacle for structural studies. Here we analyze the biophysical and biochemical properties of a stable and functional recombinant Ty1 integrase highly expressed in E.coli. The recombinant protein is monomeric and has an elongated shape harboring the three-domain structure common to all retroviral integrases at the N-terminal half, an extra folded region, and a large intrinsically disordered region at the C-terminal half. Recombinant Ty1 integrase efficiently catalyzes concerted integration in vitro, and the N-terminal domain displays similar activity. These studies that will facilitate structural analyses may allow elucidating the molecular mechanisms governing Ty1 specific integration into safe places in the genome.


Subject(s)
Integrases/chemistry , Intrinsically Disordered Proteins/chemistry , Retroelements , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Integrases/genetics , Integrases/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Toxicol In Vitro ; 66: 104863, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32304792

ABSTRACT

Inhalation of 60Co3O4 particles may occur at the work place in nuclear industry. Their low solubility may result in chronic lung exposure to γ rays. Our strategy for an improved therapeutic approach is to enhance particle dissolution to facilitate cobalt excretion, as the dissolved fraction is rapidly eliminated, mainly in urine. In vitro dissolution of Co3O4 particles was assessed with two complementary assays in lung fluid surrogates to mimic a pulmonary contamination scenario. Twenty-one molecules and eleven combinations were selected through an extensive search in the literature, based on dissolution studies of other metal oxides (Fe, Mn, Cu) and tested for dissolution enhancement of cobalt particles after 1-28 days of incubation. DTPA, the recommended treatment following cobalt contamination did not enhance 60Co3O4 particles dissolution when used alone. However, by combining molecules with different properties, such as redox potential and chelating ability, we greatly improved the efficacy of each drug used alone, leading for the highest efficacy, to a 2.7 fold increased dissolution as compared to controls. These results suggest that destabilization of the particle surface is an important initiating event for a good efficacy of chelating drugs, and open new perspectives for the identification of new therapeutic strategies.


Subject(s)
Cobalt Radioisotopes/chemistry , Cobalt/chemistry , Decontamination/methods , Oxides/chemistry , Body Fluids , Chelating Agents/chemistry , Edetic Acid/chemistry , Lung , Pentetic Acid/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...