Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Tetrahedron Lett ; 56(23): 3639-3642, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26034339

ABSTRACT

Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6.

2.
Cell Cycle ; 14(14): 2323-32, 2015.
Article in English | MEDLINE | ID: mdl-25946202

ABSTRACT

The tumor suppressor, PTEN, is one of the most commonly mutated genes in cancer. Recently, PTEN has been shown to localize in the nucleus and is required to maintain genomic stability. Here, we show that nuclear PTEN, independent of its phosphatase activity, is essential for maintaining heterochromatin structure. Depletion of PTEN leads to loss of heterochromatic foci, decreased chromatin compaction, overexpression of heterochromatic genes, and reduced protein stability of heterochromatin protein 1 α. We found that the C-terminus of PTEN is required to maintain heterochromatin structure. Additionally, cancer-associated PTEN mutants lost their tumor-suppressor function when their heterochromatin structure was compromised. We propose that this novel role of PTEN accounts for its function in guarding genomic stability and suppressing tumor development.


Subject(s)
Heterochromatin/metabolism , PTEN Phosphohydrolase/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Cell Survival/drug effects , Chromobox Protein Homolog 5 , Chromones/pharmacology , Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/chemistry , Humans , Immunoprecipitation , Mice , Morpholines/pharmacology , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Structure, Tertiary , RNA Interference , RNA, Small Interfering/metabolism
3.
Nucleic Acids Res ; 41(22): 10518-28, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24021631

ABSTRACT

Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.


Subject(s)
RNA Interference , RNA, Small Interfering/chemistry , RNA, Small Interfering/radiation effects , Benzodioxoles/chemistry , Green Fluorescent Proteins/genetics , Guanosine/chemistry , HEK293 Cells , HeLa Cells , Humans , Kinesins/genetics , Light , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry , Uridine/chemistry
4.
ACS Chem Biol ; 8(10): 2272-82, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23915424

ABSTRACT

Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is typically needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent, and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity.


Subject(s)
Gene Transfer Techniques , Light , Oligonucleotides, Antisense/metabolism , Base Sequence , HeLa Cells , Humans , Models, Biological , Molecular Structure , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Polymerase Chain Reaction , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
5.
Angew Chem Int Ed Engl ; 51(36): 9066-70, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22855386

ABSTRACT

Keeping the boron out of the ER: A genetic switch was engineered that activates gene expression in the presence of H(2)O(2). The use of a boronate group on an estrone molecule allows for activation of gene expression through binding of the estrogen receptor only when the boron group is oxidized by H(2)O(2). This sensor is highly sensitive and specific for H(2)O(2).

6.
ACS Chem Biol ; 7(7): 1247-56, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22540192

ABSTRACT

Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture.


Subject(s)
DNA/metabolism , Nucleic Acid Conformation , Oligonucleotides/metabolism , Photic Stimulation , Transcription, Genetic/physiology , DNA/chemistry , HEK293 Cells , Humans , Oligonucleotides/chemistry , Photic Stimulation/methods
7.
Bioconjug Chem ; 22(10): 2136-42, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21928851

ABSTRACT

Oligonucleotides are effective tools for the regulation of gene expression in cell culture and model organisms, most importantly through antisense mechanisms. Due to the inherent instability of DNA antisense agents, various modifications have been introduced to increase the efficacy of oligonucleotides, including phosphorothioate DNA, locked nucleic acids, peptide nucleic acids, and others. Here, we present antisense agent stabilization through conjugation of a poly(ethylene glycol) (PEG) group to a DNA oligonucleotide. By employing a photocleavable linker between the PEG group and the antisense agent, we were able to achieve light-induced deactivation of antisense activity. The bioconjugated PEG group provides stability to the DNA antisense agent without affecting its native function of silencing gene expression via RNase H-catalyzed mRNA degradation. Once irradiated with UV light of 365 nm, the PEG group is cleaved from the antisense agent leaving the DNA unprotected and open for degradation by endogenous nucleases, thereby restoring gene expression. By using a photocleavable PEG group (PhotoPEG), antisense activity can be regulated with high spatial and temporal resolution, paving the way for precise regulation of gene expression in biological systems.


Subject(s)
DNA, Antisense/chemistry , DNA, Antisense/genetics , Gene Expression Regulation , Polyethylene Glycols/chemistry , Animals , DNA, Antisense/chemical synthesis , DNA, Antisense/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Mice , NIH 3T3 Cells , Nucleic Acid Denaturation , Photolysis , Ribonuclease H/metabolism , Ultraviolet Rays
8.
J Am Chem Soc ; 133(33): 13176-82, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21761875

ABSTRACT

DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.


Subject(s)
Gene Expression Regulation/radiation effects , NF-kappa B/metabolism , Oligodeoxyribonucleotides/radiation effects , Alkaline Phosphatase/genetics , Light , Methods , Photochemical Processes , Transcription, Genetic/drug effects
9.
J Am Chem Soc ; 132(44): 15644-50, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20961123

ABSTRACT

Morpholino oligonucleotides, or morpholinos, have emerged as powerful antisense reagents for evaluating gene function in both in vitro and in vivo contexts. However, the constitutive activity of these reagents limits their utility for applications that require spatiotemporal control, such as tissue-specific gene disruptions in embryos. Here we report a novel and efficient synthetic route for incorporating photocaged monomeric building blocks directly into morpholino oligomers and demonstrate the utility of these caged morpholinos in the light-activated control of gene function in both cell culture and living embryos. We demonstrate that a caged morpholino that targets enhanced green fluorescent protein (EGFP) disrupts EGFP production only after exposure to UV light in both transfected cells and living zebrafish (Danio rerio) and Xenopus frog embryos. Finally, we show that a caged morpholino targeting chordin, a zebrafish gene that yields a distinct phenotype when functionally disrupted by conventional morpholinos, elicits a chordin phenotype in a UV-dependent manner. Our results suggest that photocaged morpholinos are readily synthesized and highly efficacious tools for light-activated spatiotemporal control of gene expression in multiple contexts.


Subject(s)
Embryo, Nonmammalian , Morpholines/chemistry , Oligonucleotides , Ultraviolet Rays , Xenopus laevis , Zebrafish , Animals , Cells, Cultured , Embryo, Nonmammalian/metabolism , Gene Expression , Oligonucleotides/genetics , Oligonucleotides/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism , Zebrafish/genetics , Zebrafish/metabolism
10.
Chembiochem ; 10(10): 1612-6, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19533711

ABSTRACT

Removal by the light: The photochemical regulation of restriction endonucleases, which are important enzymes in molecular biology, has been investigated. Photolabile protecting groups have been installed on DNA substrates and have been demonstrated to inhibit restriction endonuclease activity until removed by UV light irradiation. Interestingly, these groups do not appear to dramatically affect initial binding of the enzyme to the DNA substrate, but rather prevent recognition of the specific cleavage site.


Subject(s)
Benzodioxoles/chemistry , DNA Restriction Enzymes/metabolism , DNA/chemistry , Thymidine/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA/radiation effects , DNA Cleavage , DNA Restriction Enzymes/genetics , Deoxyribonuclease BamHI/genetics , Deoxyribonuclease BamHI/metabolism , Deoxyribonuclease EcoRI/genetics , Deoxyribonuclease EcoRI/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Substrate Specificity , Thymidine/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...