Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 104(9)2023 09.
Article in English | MEDLINE | ID: mdl-37676257

ABSTRACT

A notable signalling mechanism employed by mammalian innate immune signalling pathways uses nucleotide-based second messengers such as 2'3'-cGAMP and 2'-5'-oligoadenylates (OAs), which bind and activate STING and RNase L, respectively. Interestingly, the involvement of nucleotide second messengers to activate antiviral responses is evolutionarily conserved, as evidenced by the identification of an antiviral cGAMP-dependent pathway in Drosophila. Using a mass spectrometry approach, we identified several members of the ABCF family in human, mouse and Drosophila cell lysates as 2'-5' OA-binding proteins, suggesting an evolutionarily conserved function. Biochemical characterization of these interactions demonstrates high-affinity binding of 2'-5' OA to ABCF1, dependent on phosphorylated 2'-5' OA and an intact Walker A/B motif of the ABC cassette of ABCF1. As further support for species-specific interactions with 2'-5' OA, we additionally identified that the metabolic enzyme Decr1 from mouse, but not human or Drosophila cells, forms a high-affinity complex with 2'-5' OA. A 1.4 Å co-crystal structure of the mouse Decr1-2'-5' OA complex explains high-affinity recognition of 2'-5' OA and the mechanism of species specificity. Despite clear evidence of physical interactions, we could not identify profound antiviral functions of ABCF1, ABCF3 or Decr1 or 2'-5' OA-dependent regulation of cellular translation rates, as suggested by the engagement of ABCF proteins. Thus, although the biological consequences of the here identified interactions need to be further studied, our data suggest that 2'-5' OA can serve as a signalling hub to distribute a signal to different recipient proteins.


Subject(s)
Antiviral Agents , Drosophila , Animals , Mice , Nucleotides , Mammals
2.
Sci Immunol ; 8(79): eabp9765, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662885

ABSTRACT

The mechanisms by which innate immune receptors mediate self-nonself discrimination are unclear. In this study, we found species-specific molecular determinants of self-DNA reactivity by cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase (cGAS). Human cGAS contained a catalytic domain that was intrinsically self-DNA reactive and stimulated interferon responses in diverse cell types. This reactivity was prevented by an upstream amino (N)-terminal domain. The cGAS proteins from several nonhuman primate species exhibited a similar pattern of self-DNA reactivity in cells, but chimpanzee cGAS was inactive even when its amino-terminal domain was deleted. In contrast, the N terminus of mouse cGAS promoted self-DNA reactivity. When expressed within tumors, only self-DNA-reactive cGAS proteins protected mice from tumor-induced lethality. In vitro studies of DNA- or chromatin-induced cGAS activation did not reveal species-specific activities that correlate with self-DNA reactivity observed in macrophages. Cell biological analysis revealed that self-DNA reactivity by human cGAS, but not mouse cGAS, correlated with localization to mitochondria. We found that epitope tag positions affected self-DNA reactivity in cells and that DNA present in cell lysates undermines the reliability of cGAS biochemical fractionations. These studies reveal species-specific diversity of cGAS functions, even within the primate lineage, and highlight experimental considerations for the study of this innate immune receptor.


Subject(s)
DNA , Nucleotides, Cyclic , Animals , Mice , Humans , Reproducibility of Results , DNA/chemistry , DNA/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Mammals/metabolism
3.
Cell Rep ; 35(9): 109206, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077735

ABSTRACT

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are signaling proteins that initiate antiviral immunity in animal cells and cyclic-oligonucleotide-based anti-phage signaling system (CBASS) phage defense in bacteria. Upon phage recognition, bacterial CD-NTases catalyze synthesis of cyclic-oligonucleotide signals, which activate downstream effectors and execute cell death. How CD-NTases control nucleotide selection to specifically induce defense remains poorly defined. Here, we combine structural and nucleotide-analog interference-mapping approaches to identify molecular rules controlling CD-NTase specificity. Structures of the cyclic trinucleotide synthase Enterobacter cloacae CdnD reveal coordinating nucleotide interactions and a possible role for inverted nucleobase positioning during product synthesis. We demonstrate that correct nucleotide selection in the CD-NTase donor pocket results in the formation of a thermostable-protein-nucleotide complex, and we extend our analysis to establish specific patterns governing selectivity for each of the major bacterial CD-NTase clades A-H. Our results explain CD-NTase specificity and enable predictions of nucleotide second-messenger signals within diverse antiviral systems.


Subject(s)
Bacteriophages/physiology , Enterobacter cloacae/enzymology , Nucleotides/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Models, Molecular , Nucleotidyltransferases/chemistry , Second Messenger Systems , Structural Homology, Protein
4.
Nature ; 586(7829): 429-433, 2020 10.
Article in English | MEDLINE | ID: mdl-32877915

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity1-5. STING shares no structural homology with other known signalling proteins6-9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Evolution, Molecular , Membrane Proteins , Second Messenger Systems , Animals , Bacteria/chemistry , Bacteria/virology , Bacterial Proteins/chemistry , Bacteriophages , Crystallography, X-Ray , Cyclic GMP/metabolism , Membrane Proteins/chemistry , Models, Molecular , NAD/metabolism , Nucleotidyltransferases/metabolism
5.
Mol Cell ; 78(4): 653-669.e8, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32315601

ABSTRACT

Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.


Subject(s)
Burkitt Lymphoma/pathology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Proto-Oncogene Proteins c-myc/metabolism , Virus Activation , Virus Latency , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B-Lymphocytes/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/virology , Cell Proliferation , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Female , Gene Expression Regulation, Viral , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Cell Host Microbe ; 25(2): 336-343.e4, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30713099

ABSTRACT

Immune responses counteract infections but also cause collateral damage to hosts. Oligoadenylate synthetase 1 (OAS1) binds double-stranded RNA from invading viruses and produces 2'-5' linked oligoadenylate (2-5A) to activate ribonuclease L (RNase L), which cleaves RNA to inhibit virus replication. OAS1 can also undergo autoactivation by host RNAs, a potential trade-off to antiviral activity. We investigated functional variation in primate OAS1 as a model for how immune pathways evolve to mitigate costs and observed a surprising frequency of loss-of-function variation. In gorillas, we identified a polymorphism that severely decreases catalytic function, mirroring a common variant in humans that impairs 2-5A synthesis through alternative splicing. OAS1 loss-of-function variation is also common in monkeys, including complete loss of 2-5A synthesis in tamarins. The frequency of loss-of-function alleles suggests that costs associated with OAS1 activation can be so detrimental to host fitness that pathogen-protective effects are repeatedly forfeited.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/pharmacology , Antiviral Agents/pharmacology , Mutation , Primates/immunology , 2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Amino Acid Sequence , Animals , Endoribonucleases/metabolism , Evolution, Molecular , Genetic Variation , Haplorhini , Humans , Models, Molecular , Oligoribonucleotides/metabolism , Protein Conformation , RNA, Double-Stranded/metabolism , Sequence Analysis, Protein , Virus Replication/drug effects , Viruses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...