Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3672, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37339989

ABSTRACT

High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.


Subject(s)
Caenorhabditis elegans , Neurons , Animals , Caenorhabditis elegans/genetics , Gene Expression Profiling , Transcriptome
2.
Cell Rep ; 41(10): 111768, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476860

ABSTRACT

The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.


Subject(s)
Thalamus , Thalamus/cytology
3.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33674303

ABSTRACT

Highly multiplexed immunohistochemistry (mIHC) enables the staining and quantification of dozens of antigens in a tissue section with single-cell resolution. However, annotating cell populations that differ little in the profiled antigens or for which the antibody panel does not include specific markers is challenging. To overcome this obstacle, we have developed an approach for enriching mIHC images with single-cell RNA sequencing data, building upon recent experimental procedures for augmenting single-cell transcriptomes with concurrent antigen measurements. Spatially-resolved Transcriptomics via Epitope Anchoring (STvEA) performs transcriptome-guided annotation of highly multiplexed cytometry datasets. It increases the level of detail in histological analyses by enabling the systematic annotation of nuanced cell populations, spatial patterns of transcription, and interactions between cell types. We demonstrate the utility of STvEA by uncovering the architecture of poorly characterized cell types in the murine spleen using published cytometry and mIHC data of this organ.


Subject(s)
Single-Cell Analysis , Transcriptome , Animals , Immunohistochemistry , Mice , Staining and Labeling , Exome Sequencing
4.
Nat Methods ; 17(10): 991-1001, 2020 10.
Article in English | MEDLINE | ID: mdl-32868927

ABSTRACT

Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal RNA dynamics. Here we present single-cell metabolically labeled new RNA tagging sequencing (scNT-seq), a method for massively parallel analysis of newly transcribed and pre-existing mRNAs from the same cell. This droplet microfluidics-based method enables high-throughput chemical conversion on barcoded beads, efficiently marking newly transcribed mRNAs with T-to-C substitutions. Using scNT-seq, we jointly profiled new and old transcriptomes in ~55,000 single cells. These data revealed time-resolved transcription factor activities and cell-state trajectories at the single-cell level in response to neuronal activation. We further determined rates of RNA biogenesis and decay to uncover RNA regulatory strategies during stepwise conversion between pluripotent and rare totipotent two-cell embryo (2C)-like stem cell states. Finally, integrating scNT-seq with genetic perturbation identifies DNA methylcytosine dioxygenase as an epigenetic barrier into the 2C-like cell state. Time-resolved single-cell transcriptomic analysis thus opens new lines of inquiry regarding cell-type-specific RNA regulatory mechanisms.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Animals , Cell Line , Embryo, Mammalian , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Mice , Neurons/metabolism , Principal Component Analysis , RNA, Messenger , Single-Cell Analysis , Time Factors
5.
PLoS Comput Biol ; 15(11): e1007509, 2019 11.
Article in English | MEDLINE | ID: mdl-31756191

ABSTRACT

The prevailing paradigm for the analysis of biological data involves comparing groups of replicates from different conditions (e.g. control and treatment) to statistically infer features that discriminate them (e.g. differentially expressed genes). However, many situations in modern genomics such as single-cell omics experiments do not fit well into this paradigm because they lack true replicates. In such instances, spectral techniques could be used to rank features according to their degree of consistency with an underlying metric structure without the need to cluster samples. Here, we extend spectral methods for feature selection to abstract simplicial complexes and present a general framework for clustering-independent analysis. Combinatorial Laplacian scores take into account the topology spanned by the data and reduce to the ordinary Laplacian score when restricted to graphs. We demonstrate the utility of this framework with several applications to the analysis of gene expression and multi-modal genomic data. Specifically, we perform differential expression analysis in situations where samples cannot be grouped into distinct classes, and we disaggregate differentially expressed genes according to the topology of the expression space (e.g. alternative paths of differentiation). We also apply this formalism to identify genes with spatial patterns of expression using fluorescence in-situ hybridization data and to establish associations between genetic alterations and global expression patterns in large cross-sectional studies. Our results provide a unifying perspective on topological data analysis and manifold learning approaches to the analysis of large-scale biological datasets.


Subject(s)
Computational Biology/methods , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Cluster Analysis , Gene Expression Profiling/methods , Genomics/methods , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...