Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 37(3): 1036-1056, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36343627

ABSTRACT

The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Phytochemicals/pharmacology
2.
BMC Res Notes ; 12(1): 631, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31551084

ABSTRACT

OBJECTIVE: Basal stem rot disease causes severe economic losses to oil palm production in South-east Asia and little is known on the pathogenicity of the pathogen, the basidiomyceteous Ganoderma boninense. Our data presented here aims to identify both the house-keeping and pathogenicity genes of G. boninense using Illumina sequencing reads. DESCRIPTION: The hemibiotroph G. boninense establishes via root contact during early stage of colonization and subsequently kills the host tissue as the disease progresses. Information on the pathogenicity factors/genes that causes BSR remain poorly understood. In addition, the molecular expressions corresponding to G. boninense growth and pathogenicity are not reported. Here, six transcriptome datasets of G. boninense from two contrasting conditions (three biological replicates per condition) are presented. The first datasets, collected from a 7-day-old axenic condition provide an insight onto genes responsible for sustenance, growth and development of G. boninense while datasets of the infecting G. boninense collected from oil palm-G. boninense pathosystem (in planta condition) at 1 month post-inoculation offer a comprehensive avenue to understand G. boninense pathogenesis and infection especially in regard to molecular mechanisms and pathways. Raw sequences deposited in Sequence Read Archive (SRA) are available at NCBI SRA portal with PRJNA514399, bioproject ID.


Subject(s)
Axenic Culture/methods , Ganoderma/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , RNA-Seq/methods , Arecaceae/microbiology , Ganoderma/pathogenicity , Gene Expression Profiling/statistics & numerical data , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Roots/microbiology , RNA-Seq/statistics & numerical data , Signal Transduction/genetics , Virulence/genetics
3.
Front Plant Sci ; 8: 1395, 2017.
Article in English | MEDLINE | ID: mdl-28861093

ABSTRACT

Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5-34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%.

4.
Pol J Microbiol ; 65(3): 383-388, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-29334072

ABSTRACT

Ganoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described. Matured basidiocarp raised under the glasshouse conditions yielded a total of 8.3 × 104 basidiospores/ml using the low speed centrifugation technique. Mycelium aged 3-day-old treated under an incubation period of 3 h in lysing enzyme from Trichoderma harzianum (10 mg/ml) suspended in osmotic stabilizer (0.6 M potassium chloride and 20 mM dipotassium phosphate buffer) yielded the highest number of viable protoplasts (8.9 × 106 single colonies) among all possible combinations tested (regeneration media, age of mycelium, osmotic stabilizer, digestive enzyme and incubation period).


Subject(s)
Fruiting Bodies, Fungal/growth & development , Ganoderma/growth & development , Ganoderma/physiology , Mycelium/growth & development , Mycelium/physiology , Plant Diseases/microbiology , Protoplasts/physiology , Spores, Fungal/growth & development , Spores, Fungal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...