Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256146

ABSTRACT

The prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model. However, the effect of commercially available medical cannabis oils that contain numerous additional active molecules has not been examined. We tested herein the effects of THC- and CBD-enriched medical cannabis oils on obesity parameters and the gut microbiota composition of C57BL/6 male mice fed with either a high-fat or standard diet. We also assessed the levels of prominent endocannabinoids and endocannabinoid-like lipid mediators in the liver. THC-enriched extract prevented weight gain by a high-fat diet and attenuated diet-induced liver steatosis concomitantly with reduced levels of the lipid mediators palmitoyl ethanolamide (PEA) and docosahexaenoyl ethanolamide (DHEA) in the liver. In contrast, CBD-enriched extract had no effect on weight gain, but, on the contrary, it even exacerbated liver steatosis. An analysis of the gut microbiota revealed that mainly time but not treatment exerted a strong effect on gut microbiota alterations. From our data, we conclude that THC-enriched cannabis oil where THC is the main constituent exerts the optimal anti-obesity effects.


Subject(s)
Cannabidiol , Cannabis , Fatty Liver , Hallucinogens , Medical Marijuana , Microbiota , Male , Animals , Mice , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Endocannabinoids , Cannabinoid Receptor Agonists , Cannabidiol/pharmacology , Obesity/drug therapy , Obesity/etiology , Weight Gain , Oils , Plant Extracts/pharmacology
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834076

ABSTRACT

Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Neuroglia/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Mammals
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762099

ABSTRACT

Prolonged cannabis users show a lower prevalence of obesity and associated comorbidities. In rodent models, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from the plant Cannabis sativa L. have shown anti-obesity properties, suggesting a link between the endocannabinoid system (ECS) and obesity. However, the oral administration route has rarely been studied in this context. The aim of this study was to investigate the effect of prolonged oral administration of pure THC and CBD on obesity-related parameters and peripheral endocannabinoids. C57BL/6 male mice were fed with either a high-fat or standard diet and then received oral treatment in ramping doses, namely 10 mg/kg of THC or CBD for 5 weeks followed by 30 mg/kg for an additional 5 weeks. Mice treated with THC had attenuated weight gain and improved glucose tolerance, followed by improvement in steatosis markers and decreased hypertrophic cells in adipose epididymal tissue. Mice treated with CBD had improved glucose tolerance and increased markers of lipid metabolism in adipose and liver tissues, but in contrast to THC, CBD had no effect on weight gain and steatosis markers. CBD exclusively decreased the level of the endocannabinoid 2-arachidonoylglycerol in the liver. These data suggest that the prolonged oral consumption of THC, but not of CBD, ameliorates diet-induced obesity and metabolic parameters, possibly through a mechanism of adipose tissue adaptation.


Subject(s)
Cannabidiol , Cannabis , Mice , Animals , Dronabinol/pharmacology , Cannabidiol/pharmacology , Endocannabinoids , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Weight Gain , Glucose
4.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445812

ABSTRACT

Dietary intervention in the treatment of ulcerative colitis involves, among other things, modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The Black Soldier Fly Larvae's (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus, the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0 suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways. Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery, reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response. These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.


Subject(s)
Colitis , Diptera , Mice , Animals , Colitis/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Fatty Acids/therapeutic use , Larva
5.
Nutrients ; 15(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299512

ABSTRACT

Human milk oligosaccharides (HMOs) stimulate the growth of gut commensals, prevent the adhesion of enteropathogens and modulate host immunity. The major factors influencing variations in the HMO profile are polymorphisms in the secretor (Se) or Lewis (Le) gene, which affect the activity of the enzymes fucoslytransferase 2 and 3 (FUT2 and FUT3) that lead to the formation of four major fucosylated and non-fucosylated oligosaccharides (OS). This pilot study aimed to determine the HMO profile of Israeli breastfeeding mothers of 16 term and 4 preterm infants, from a single tertiary center in the Tel Aviv area. Fifty-two human milk samples were collected from 20 mothers at three-time points: colostrum, transitional milk and mature milk. The concentrations of nine HMOs were assessed using liquid chromatography coupled with mass spectra chromatograms. Fifty-five percent of the mothers were secretors and 45% were non-secretors. Infant sex affected HMO levels depending on the maternal secretor status. Secretor mothers to boys had higher levels of FUT2-dependent OS and higher levels of disialyllacto-N-tetraose in the milk of mothers to girls, whereas non-secretor mothers to girls had higher levels of 3'-sialyllactose. In addition, the season at which the human milk samples were obtained affected the levels of some HMOs, resulting in significantly lower levels in the summer. Our findings provide novel information on the irregularity in the HMO profile among Israeli lactating women and identify several factors contributing to this variability.


Subject(s)
Lactation , Milk, Human , Infant , Male , Humans , Infant, Newborn , Female , Milk, Human/chemistry , Breast Feeding , Pilot Projects , Israel , Infant, Premature , Oligosaccharides/analysis
6.
Biomedicines ; 10(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36289704

ABSTRACT

We explored the structural features of recombinant ostreolysin A (rOlyA), a protein produced by Pleurotus ostreatus and responsible for binding to α/ß-tubulin. We found that rOlyA cell internalization is essential for the induction of adipocyte-associated activity, which is mediated by the interaction of rOlyA and microtubule proteins. We created different point mutations at conserved tryptophan (W) sites in rOlyA and analyzed their biological activity in HIB-1B preadipocytes. We demonstrated that the protein's cell-internalization ability and the differentiated phenotype induced, such as small lipid-droplet formation and gene expression of mitogenesis activity, were impaired in point-mutated proteins W96A and W28A, where W was converted to alanine (A). We also showed that an rOlyA homologue, OlyA6 complexed with mCherry, cannot bind to ß-tubulin and does not induce mitochondrial biosynthesis-associated markers, suggesting that the OlyA6 region masked by mCherry is involved in ß-tubulin binding. Protein-protein docking simulations were carried out to investigate the binding mode of rOlyA with ß-tubulin. Taken together, we identified functional sites in rOlyA that are essential for its binding to ß-tubulin and its adipocyte-associated biological activity.

7.
Front Vet Sci ; 9: 1092812, 2022.
Article in English | MEDLINE | ID: mdl-36699331

ABSTRACT

Introduction: Beta-glucans are known as biological response modifiers due to their ability to activate the immune system. This research aimed to determine the efficacy and safety of feeding beta-glucans from various sources on the immune status and intestinal morphology of chickens. Methods: To this end we used in vitro and in vivo set-ups. In the in vitro set-up the chicken macrophage cell line HD-11 was used to measure the response of the chicken immune cells to beta-glucans extracted from algae and mushrooms on immune-related gene expression and associated activities. Additionally, we conducted two in vivo experiments using either beta-glucans extracted from yeast or mix of yeast and mushrooms beta-glucans as part of the chicks feed in order to test their effects on the chick intestinal morphology. Results: In the in vitro set-up exposure of HD-11 cells to a concentration of 1 mg/ml of algae and mushroom beta-glucans resulted in significantly higher expression of 6 genes (TNFα, IL4, IL6, IL8, IL10, and iNOS2) compared to control. The release of nitrite oxide (NO) to the medium after exposure of HD-11 cells to mushrooms or algae beta-glucans was significantly increased compared to control. Additionally, significantly increased phagocytosis activity was found after exposure of the cells to algae and mushroom beta-glucans. In the in vivo set-up we observed that the length of the villi and the number of goblet cells in the ileum and the jejunum in the beta-glucan fed chicks were significantly augmented compared to control, when the chicks were fed with either yeast or yeast and mushroom beta-glucans mix. Discussion: In conclusion, dietary supplementation of poultry with beta-glucan exerts significant and positive effects on immune activity and the intestinal morphology in poultry.

8.
Food Funct ; 12(18): 8326-8339, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34323908

ABSTRACT

Nitrites and nitrates are traditional food additives used as curing agents in the food industry. They inhibit the growth of microorganisms and give a typical pink color to meat. Besides the positive effects of nitrite in foods, if present at high levels in the body, may induce hypoxia and contribute to the production of pro-carcinogenic secondary N-nitrosamines. This study investigated the whole-body metabolic effects of hemin and nitrite added to a high fat diet as red and processed red meat nutritional models. Mice were fed for 11 weeks with five different diets-(1) control diet (ND), (2) high fat diet (HFD) with 60% fat, (3) HFD with hemin (HFD + H, red meat model), (4) HFD with hemin and nitrite (HFD + HN, processed meat model), and (5) HFD with hemin, nitrite, and secondary amine (HFD + HNN, N-nitrosamine generating model)-and several metabolic parameters were determined and respiratory measurements were performed. Mice fed with the HFD + H or HFD + HNN diet had a lower epididymal white adipose tissue (eWAT) : body ratio and lower fasting glucose level than those fed the HFD alone. In addition, our results demonstrated a relief in hepatosteatosis grade among the HFD + H and HFD + HNN diet fed mice. Nitrite added to the HFD impaired the ability to use fat for energy, opposite to the effect of hemin. This study shows that nitrite in addition to pro-carcinogenesis and hypoxia can impact metabolic disease progression when added to meat.


Subject(s)
Energy Metabolism/drug effects , Hemin/pharmacology , Nitrites/toxicity , Animals , Diet, High-Fat , Inflammation/chemically induced , Inflammation/pathology , Inflammation/prevention & control , Male , Meat Products , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Random Allocation
9.
Int J Med Mushrooms ; 21(8): 765-781, 2019.
Article in English | MEDLINE | ID: mdl-31679284

ABSTRACT

We have recently demonstrated that we could enhance glucan content in Pleurotus eryngii following cultivation of the mushrooms on a substrate containing different concentrations of olive mill solid waste (OMSW). These changes are directly related to the content of OMSW in the growing substrate. Using dextran sulfate sodium (DSS)-in-flammatory bowel disease (IBD) mice model, we measured the colonic inflammatory response to the different glucan preparations. We found that the histology damaging score (HDS) resulting from DSS treatment reach a value of 11.8 ± 2.3 were efficiently downregulated by treatment with the fungal extracted glucans. Glucans extracted from stalks cultivated at 20% OMSW downregulated to a HDS value of 6.4 ± 0.5 whereas those cultivated at 80% OMSW showed the strongest effects (5.5 ± 0.6). Similar downregulatory effects were obtained for expression of various intestinal cytokines. All tested glucans were equally effective in regulating the number of CD14/CD16 monocytes from 18.2 ± 2.7% for DSS to 6.4 ± 2.0 for DSS + glucans extracted from stalks cultivated at 50% OMSW. We tested the effect of glucans on lipopolysaccharide-induced production of TNF-α, which demonstrated that stalk-derived glucans were more effective than caps-derived glucans. Isolated glucans competed with anti-Dectin-1 and anti-CR3 antibodies, indicating that they contain ß-glucans recognized by these receptors. In conclusion, the most effective glucans in ameliorating IBD-associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii grown at higher concentrations of OMSW. We conclude that these stress-induced growing conditions may be helpful in selecting more effective glucans derived from edible mushrooms.


Subject(s)
Glucans/pharmacology , Immunologic Factors/pharmacology , Inflammatory Bowel Diseases/drug therapy , Pleurotus/chemistry , Agaricales/chemistry , Cytokines/metabolism , Gene Expression Regulation/drug effects , Glucans/isolation & purification , Humans , Immunologic Factors/isolation & purification , Inflammation/drug therapy , Olea , Pleurotus/growth & development , Tumor Necrosis Factor-alpha/metabolism , beta-Glucans/isolation & purification , beta-Glucans/pharmacology
10.
Int J Mol Sci ; 19(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373293

ABSTRACT

: Pleurotus eryngii is recognized for its prominent nutritional and medicinal value. In our study, we tested the effect of glucans on lipopolysaccharide (LPS)-induced production of TNF-α. We demonstrated that glucan extracts are more effective than mill mushroom preparations. Additionally, the effectiveness of stalk-derived glucans were slightly more pronounced than of caps. Cap and stalk glucans from mill or isolated glucan competed dose-dependently with anti-Dectin-and anti-CR-3 antibodies, indicating that they contain ß-glucans recognized by these receptors. Using the dextran sulfate sodium (DSS)-inflammatory bowel disease mice model, intestinal inflammatory response to the mill preparations was measured and compared to extracted glucan fractions from caps and stalks. We found that mill and glucan extracts were very effective in downregulating IFN-γ and MIP-2 levels and that stalk-derived preparations were more effective than from caps. The tested glucans were equally effective in regulating the number of CD14/CD16 monocytes and upregulating the levels of fecal-released IgA to almost normal levels. In conclusion, the most effective glucans in ameliorating some IBD-inflammatory associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii. These spatial distinctions may be helpful in selecting more effective specific anti-inflammatory mushrooms-derived glucans.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/pharmacology , Pleurotus/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line , Female , Fungal Polysaccharides/analysis , Fungal Polysaccharides/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C
11.
J Biol Eng ; 11: 44, 2017.
Article in English | MEDLINE | ID: mdl-29201140

ABSTRACT

BACKGROUND: Previously we demonstrated that an entire bacterial operon (the PRN operon) is expressible in plants when driven by the Tomato -yellow-leaf-curl-virus (TYLCV) -derived universal vector IL-60.Petroleum-derived plastics are not degradable, and are therefore harmful to the environment. Fermentation of bacteria carrying operons for polyhydroxyalkanoates (PHAs) produces degradable bioplastics which are environmentally friendly. However, bacterial production of bioplastics is not cost-effective, and attention is turning to their production in plants. Such "green" plastics would be less expensive and environmentally friendly. Hence, attempts are being made to substitute petroleum-derived plastics with "green" plastics. However, transformation of plants with genes of operons producing bioplastics has deleterious effects. Transformation of plastids does not cause deleterious effects, however it is a complicated procedures. RESULTS: We have developed another TYLCV-based vector (SE100) and show that yet another bacterial operon (the phaCAB operon) when driven by SE100 is also expressed in plants. We employed the combination of SE100 and the phaCAB operon to drive the operon to the plastids and produce in plants a biodegradable plastic [polyhydroxybutyrate (PHB)].Here we indicate that the bacterial operon (phaCAB), when driven by the newly developed universal plant vector SE100 is directed to chloroplasts and produces in plants PHB, a leading PHA. The PHB-producing plants circumvent the need for complicated technical procedures. CONCLUSION: The viral vector system SE100 facilitated the production of the bio-plastic poly-3-hydroxybutyrate. This was achieved by using the full pha-CAB operon indicating that TYLCV based system can transcribe and translate genes from bacterial operons controlled by a single cis element. Our data hints to the participation of the chloroplasts in these processes.

12.
Int J Mol Sci ; 18(7)2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28718825

ABSTRACT

Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to ß-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several Pleurotus species for their total, ß and α-glucan content. Pleurotus eryngii was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe) of the fruit body contained higher glucan content then the caps (pileus). Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and ß-glucans. Using olive mill solid waste (OMSW) from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that Pleurotus eryngii can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.


Subject(s)
Glucans/metabolism , Olea/chemistry , Pleurotus/metabolism , Waste Products , Eucalyptus/chemistry , Glucans/isolation & purification , Pleurotus/growth & development , beta-Glucans/metabolism
13.
Arch Virol ; 159(9): 2263-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24719195

ABSTRACT

The IL-60 platform, consisting of a disarmed form of tomato yellow leaf curl virus (TYLCV) and auxiliary components, was previously developed as a nontransgenic universal vector system for gene expression and silencing that can express an entire operon in plants. IL-60 does not allow rolling-circle replication; hence, production of viral single-stranded (ss) DNA progeny is prevented. We used this double-stranded (ds) DNA-restricted platform (uncoupled from the dsDNA→ssDNA replication phase of progeny viral DNA) for functional genomics studies of TYLCV. We report that the noncoding 314-bp intergenic region (IR) is the only viral element required for viral dsDNA replication. None of the viral genes are required, suggesting recruitment of host factors that recognize the IR. We further show that IR-carrying reporter genes are also capable of replication but remain confined to the cells into which they were introduced. Only two sense-oriented viral genes (V1 and V2) need to be added to the IR-carrying construct for expression and movement. Hence, any IR-dsDNA construct supplemented with V1 and V2 becomes a replication-competent, mobile and expressing plant plasmid. All viral functions (replication, expression and movement) are determined by the IR and the sense-oriented genes. The complementary-oriented viral genes have auxiliary roles in the late phase of the virus "life cycle". The previously reported involvement of some viral genes in expression and movement is therefore revised.


Subject(s)
Begomovirus/physiology , Gene Expression , Host-Pathogen Interactions , Virus Replication , Begomovirus/genetics , DNA, Intergenic , Genome, Viral
14.
Plant Physiol ; 158(4): 1883-92, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22353575

ABSTRACT

Multigene expression is required for metabolic engineering, i.e. coregulated expression of all genes in a metabolic pathway for the production of a desired secondary metabolite. To that end, several transgenic approaches have been attempted with limited success. Better success has been achieved by transforming plastids with operons. IL-60 is a platform of constructs driven from the geminivirus Tomato yellow leaf curl virus. We demonstrate that IL-60 enables nontransgenic expression of an entire bacterial operon in tomato (Solanum lycopersicum) plants without the need for plastid (or any other) transformation. Delivery to the plant is simple, and the rate of expressing plants is close to 100%, eliminating the need for selectable markers. Using this platform, we show the expression of an entire metabolic pathway in plants and delivery of the end product secondary metabolite (pyrrolnitrin). Expression of this unique secondary metabolite resulted in the appearance of a unique plant phenotype disease resistance. Pyrrolnitrin production was already evident 2 d after application of the operon to plants and persisted throughout the plant's life span. Expression of entire metabolic pathways in plants is potentially beneficial for plant improvement, disease resistance, and biotechnological advances, such as commercial production of desired metabolites.


Subject(s)
Gene Expression Regulation, Bacterial , Operon/genetics , Pseudomonas fluorescens/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Chromatography, High Pressure Liquid , DNA Replication/genetics , Disease Resistance/immunology , Genes, Bacterial/genetics , Solanum lycopersicum/immunology , Mass Spectrometry , Plant Diseases/immunology , Plant Diseases/microbiology , Pyrrolnitrin/chemistry , Pyrrolnitrin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhizoctonia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...