Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 15(6): 1929-1941, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911163

ABSTRACT

In the last decades, carbonic anhydrases (CAs) have become the top investigated innovative pharmacological targets and, in particular, isoforms IX and XII have been widely studied due to the evidence of their overexpression in hypoxic tumors. The frantic race to find new anticancer agents places the quick preparation of large libraries of putative bioactive compounds as the basis of a successful drug discovery and development programme. In this context, multi-component and, in general, one-step reactions are becoming very popular and, among them, Biginelli's reaction gave clean and easy-to-isolate products. Thus, we synthesized a series of Biginelli's products (10-17a-b) and similar derivatives (20-21) bearing the benzenesulfonamide moiety, which is known to inhibit CA enzymes. Through the stopped-flow technique, we were able to assess their ability to inhibit the targeted CAs IX and XII in the nanomolar range with promising selectivity over the physiologically relevant isoforms I and II. Crystallography studies and docking simulations helped us to gain insight into the interaction patterns established in the enzyme-inhibitor complex. From a chemical similarity-based screening of in-house libraries of compounds, a diphenylpyrimidine (23) emerged. The surprisingly potent inhibitory activity of 23 for CAs IX and XII along with its strong antiproliferative effect on two (triple-negative breast cancer MDA-MB-231 and glioblastoma U87MG) cell lines laid the foundation for further investigation, again confirming the key role of CAs in cancer.

2.
RSC Med Chem ; 15(2): 720-732, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38389870

ABSTRACT

ATP-binding cassette (ABC) transporters are a large family of proteins involved in membrane transport of a wide variety of substrates. Among them, ABCB1, also known as MDR-1 or P-glycoprotein (P-gp), is the most characterized. By exporting xenobiotics out of the cell, P-gp activity can affect the ADME properties of several drugs. Moreover, P-gp has been found to mediate multidrug resistance in cancer cells. Thus, the inhibition of P-gp activity may lead to increased absorption and/or intracellular accumulation of co-administered drugs, enhancing their effectiveness. Using the human-mouse chimeric cryoEM 3D structure of the P-gp in the inhibitor-bound intermediate form (PDBID: 6qee), approximately 200 000 commercially available natural compounds from the ZINC database were virtually screened. To build a model able to discriminate between substrate and inhibitors, two datasets of compounds with known activity, including P-gp inhibitors, substrates, and inactive molecules were also docked. The best docking pose of selected substrates and inhibitors were used to generate 3D common feature pharmacophoric models that were combined with the Autodock Vina binding energy values to prioritize compounds for visual inspection. With this consensus approach, 13 potential candidates were identified and then tested for their ability to inhibit P-gp, using zosuquidar, a third generation P-gp inhibitor, as a reference drug. Eight compounds were found to be active with 6 of them having an IC50 lower than 5 µM in a membrane-based ATPase activity assay. Moreover, the P-gp inhibitory activity was also confirmed by two different cell-based in vitro methods. Both retrospective and prospective results demonstrate the ability of the combined structure-based pharmacophore modeling and docking-based virtual screening approach to predict novel hit compounds with inhibitory activity toward P-gp. The resulting chemical scaffolds could serve as inspiration for the optimization of novel and more potent P-gp inhibitors.

4.
Nat Chem Biol ; 20(7): 823-834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38167919

ABSTRACT

Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.


Subject(s)
Photoaffinity Labels , Small Molecule Libraries , Binding Sites , Humans , Photoaffinity Labels/chemistry , Small Molecule Libraries/chemistry , Protein Binding , Proteomics/methods , Proteome/metabolism , Proteins/chemistry , Proteins/metabolism , Peptides/chemistry , Peptides/metabolism
5.
Phytother Res ; 37(10): 4304-4320, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37433745

ABSTRACT

The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.

6.
J Nat Prod ; 86(7): 1698-1707, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37402317

ABSTRACT

In the present study, the antiviral activity of cannabinoids isolated from Cannabis sativa L. was assessed in vitro against a panel of SARS-CoV-2 variants, indicating cannabidiolic acid (CBDA) was the most active. To overcome the instability issue of CBDA, its methyl ester was synthesized and tested for the first time for its antiviral activity. CBDA methyl ester showed a neutralizing effect on all the SARS-CoV-2 variants tested with greater activity than the parent compound. Its stability in vitro was confirmed by ultra-high-performance liquid chromatography (UHPLC) analysis coupled with high-resolution mass spectrometry (HRMS). In addition, the capacity of both CBDA and its derivative to interact with the virus spike protein was assessed in silico. These results showed that CBDA methyl ester can be considered as a lead compound to be further developed as a new effective drug against COVID-19 infection.


Subject(s)
COVID-19 , Cannabinoids , Cannabis , Cannabinoids/chemistry , Cannabis/chemistry , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Drug Treatment
7.
J Enzyme Inhib Med Chem ; 38(1): 2183810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36916299

ABSTRACT

Helicobacter pylori (HP) is among the most common pathogens causing infection in humans worldwide. Oxidative stress and gastric inflammation are involved in the progression of HP-related gastric diseases, and they can be targeted by integrating conventional antibiotic treatment with polyphenol-enriched natural products. In this work, we characterised three different propolis extracts and evaluated their stability under in vitro simulated gastric digestion, compared to their main constituents alone. The extract with the highest stability to digestion (namely, the dark propolis extract, DPE) showed a minimum bactericidal concentration (MBC) lower than 1 mg/mL on HP strains with different virulence factors. Finally, since urease is one of the virulence factors contributing to the establishment of a microenvironment that promotes HP infection, we evaluated the possible inhibition of this enzyme by using molecular docking simulations and in vitro colorimetric assay, showing that galangin and pinocembrin may be involved in this activity.


Subject(s)
Helicobacter pylori , Propolis , Humans , Propolis/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Virulence Factors/pharmacology , Plant Extracts/pharmacology , Digestion
8.
Pharmaceutics ; 15(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36678869

ABSTRACT

In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.

9.
Phytomedicine ; 111: 154670, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681053

ABSTRACT

BACKGROUND: Even though numerous Histone deacetylase inhibitors (HDACi) have been approved for the treatment of different types of cancer, and others are in clinical trials for the treatment of neurodegenerative diseases, the main problem related to the clinical use of available HDACi is their low isoform selectivity which causes undesirable effects and inevitably limits their therapeutic application. Previously, we demonstrated that a standardized Zingiber officinalis Roscoe rhizome extract (ZOE) reduced neuroinflammation through HDAC1 inhibition in a mice model of neuropathy, and this activity was related to terpenes fraction. HYPOTHESIS/PURPOSE: The aim of this work was to identify the ZOE constituent responsible for the activity on HDAC1 and to study its possible application in trauma-induced neuropathic pain. METHODS: The ability of ZOE and its terpenes fraction (ZTE) to inhibit HDAC and SIRT isoforms activity and protein expression was assessed in vitro. Then, a structure-based virtual screening approach was applied to predict which constituent could be responsible for the activity. In the next step, the activity of selected compound was tested in an in vitro model of neuroinflammation and in an in vivo model of peripheral neuropathy (SNI). RESULTS: ZTE resulted to be more potent than ZOE on HDAC1, 2, and 6 isoforms, while ZOE was more active on HDAC8. Zingiberene (ZNG) was found to be the most promising HDAC1 inhibitor, with an IC50 of 2.3 ± 0.1 µM. A non-zinc-binding mechanism of inhibition was proposed based on molecular docking. Moreover, the oral administration of ZNG reduced thermal hyperalgesia and mechanical allodynia in animals with neuropathy after 60 min from administration, and decreased HDAC-1 levels in the spinal cord microglia. CONCLUSION: We found a new non-zinc-dependent inhibitor of HDAC class I, with a therapeutic application in trauma-related neuropathic pain forms in which microglia-spinal overexpression of HDAC1 occurs. The non-zinc-binding mechanism has the potential to reduce off target effects, leading to a higher selectivity and better safety profile, compared to other HDAC inhibitors.


Subject(s)
Histone Deacetylase Inhibitors , Neuralgia , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Molecular Docking Simulation , Neuroinflammatory Diseases , Neuralgia/drug therapy , Neuralgia/metabolism , Hyperalgesia/drug therapy , Protein Isoforms/therapeutic use
10.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Article in English | MEDLINE | ID: mdl-36583304

ABSTRACT

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Subject(s)
Cannabidiol , Cannabis , Neuralgia , Receptor, Cannabinoid, CB2 , Animals , Mice , Cannabidiol/pharmacology , Cannabis/chemistry , Microglia , Neuralgia/drug therapy , Neuroinflammatory Diseases , Oils , Quality of Life , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism
11.
Fitoterapia ; 163: 105315, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179898

ABSTRACT

The purpose of this study was to evaluate the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract (CSE) and its main constituents, cannabidiol and ß-caryophyllene. An in vitro model of glutamate-induced neuronal excitotoxicity using SH-SY5Y cells was optimized. The impact of CSE on glutamate-impaired cell viability, brain-derived neurotrophic factor release, CB1 protein expression, and ERK levels was evaluated. The involvement of CB1 modulation was verified by the cotreatment with the CB1 antagonist AM4113. CSE was able to significantly protect SH-SY5Y from glutamate-impaired cell viability, and to counteract the changes in brain-derived neurotrophic factor levels, with a mechanism of action involving ERK modulation. Moreover, CSE completely reversed the reduction of CB1 receptor expression induced by glutamate, and the presence of the CB1 antagonist AM4113 reduced CSE effectiveness, suggesting that CBr play a role in the modulation of neuronal excitotoxicity. This work demonstrated the in vitro effectiveness of CSE as a neuroprotective agent, proposing the whole cannabis phytocomplex as a more effective strategy, compared to its main constituents alone, and suggested further investigations by using more complex cell models before moving to in vivo studies.


Subject(s)
Cannabidiol , Cannabis , Neuroblastoma , Neuroprotective Agents , Humans , Cannabidiol/pharmacology , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor , Molecular Structure , Glutamic Acid , Plant Extracts/pharmacology
12.
ACS Med Chem Lett ; 13(8): 1329-1336, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978701

ABSTRACT

A virtual screening approach based on a five-feature pharmacophoric model for negative modulators of GLI1 was applied to databases of commercially available compounds. The resulting quinoline derivatives showed significant ability to reduce the GLI1 protein level and were characterized by submicromolar antiproliferative activity toward human melanoma A375 and medulloblastoma DAOY cell lines. Decoration of the quinoline ring and chemical rigidification to an oxazino-quinoline scaffold allowed us to deduce SAR considerations for future ligand optimization.

13.
J Agric Food Chem ; 70(23): 6963-6981, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35652597

ABSTRACT

The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Molecular Structure , Structure-Activity Relationship , Weed Control
14.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Article in English | MEDLINE | ID: mdl-35393641

ABSTRACT

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Subject(s)
Cannabidiol , Cannabis , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cytokines/metabolism , Endocannabinoids/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Microglia , NF-kappa B/metabolism , Receptor, Cannabinoid, CB2/metabolism
15.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054958

ABSTRACT

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-ß-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antiparasitic Agents/pharmacology , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Ivermectin/analogs & derivatives , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Dose-Response Relationship, Drug , Drug Discovery , Ivermectin/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Structure-Activity Relationship
16.
Eur J Med Chem ; 229: 114078, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34992041

ABSTRACT

Current therapeutic armamentarium for treatment of HIV-1 infection is based on the use of highly active antiretroviral therapy that, unfortunately, does not act as a curative remedy. Moreover, duration of the therapy often results in lack of compliance with the consequent emergence of multidrug resistance. Finally, drug toxicity issues also arise during treatments. In the attempt to achieve a curative effect, in addition to invest substantial resources in finding new anti-HIV-1 agents and in optimizing antiviral lead compounds and drugs currently available, additional efforts should be done to deplete viral reservoir located within host CD4+ T cells. Gp120 binders represent a class of compounds able to affect the interactions between viral envelope proteins and host CD4, thus avoiding virus-to-cell attachment and fusion, and the consequent viral entry into host cells. This review summarizes the efforts done in the last five years to design new gp120 binders, that finally culminated in the approval of fostemsavir as an anti-HIV-1 drug.


Subject(s)
Anti-HIV Agents/chemistry , HIV Envelope Protein gp120/metabolism , HIV Infections/drug therapy , HIV-1/drug effects , Oxalates/chemistry , Anti-HIV Agents/pharmacology , Antiretroviral Therapy, Highly Active , HIV Envelope Protein gp41/metabolism , Humans , Organophosphates/pharmacology , Oxalates/pharmacology , Piperazines/pharmacology , Protein Binding , Protein Conformation , Structure-Activity Relationship , Virus Internalization
17.
Minerva Pediatr (Torino) ; 74(5): 511-518, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32418407

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is an inflammatory condition of the gastrointestinal tract, characterized by chronic and relapsing immune system activation, often diagnosed in adolescence, with a rising incidence in pediatric populations. IBD results from altered interactions between gut microbes and the intestinal immune system which induce an aberrant immune response, thus anti-inflammatory or immunosuppressive therapies are generally used. Recent interest has been given to the identification of integrative and complementary approaches that could be able to restore and preserve the intestinal barrier function. METHODS: In this work, we tested the effect of a fixed combination of probiotics and herbal extract (Colikind Gocce® [CKG], Schwabe Pharma, Egna-Neumarkt, Bolzano, Italy) in an in-vitro model of intestinal inflammation. Caco-2 cells stimulated with LPS-conditioned monocytes culture medium was used as a paradigm of intestinal inflammation. The possible effect of CKG in maintaining the homeostasis of the intestinal epithelial barrier was investigated by measurement of the trans-epithelial electrical resistance, the paracellular permeability, and the release of inflammatory cytokines (TNF-α, IL-8, and IL-10). RESULTS: Results obtained in this work demonstrated that CKG is able to prevent the impairment of intestinal barrier function induced by inflammation, ameliorating the transepithelial electrical resistance and the paracellular permeability of the Caco-2 monolayer; moreover, CKG is able to counteract the increased release of TNF-a and IL-8 induced by inflammatory stimulus, thus reducing the intestinal inflammation. CONCLUSIONS: This work underlines the protective effect of CKG on intestinal barrier, reducing the damages induced by inflammatory stimulus. This suggests CKG as an interesting product in the management of intestinal inflammatory conditions.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Humans , Anti-Inflammatory Agents/pharmacology , Caco-2 Cells , Culture Media, Conditioned/pharmacology , Inflammation , Interleukin-8/pharmacology , Intestinal Mucosa , Lipopolysaccharides/pharmacology , Probiotics/pharmacology , THP-1 Cells
18.
Front Pharmacol ; 12: 641210, 2021.
Article in English | MEDLINE | ID: mdl-33995048

ABSTRACT

The relevance and incidence of intestinal bowel diseases (IBD) have been increasing over the last 50 years and the current therapies are characterized by severe side effects, making essential the development of new strategies that combine efficacy and safety in the management of human IBD. Herbal products are highly considered in research aimed at discovering new approaches for IBD therapy and, among others, Cannabis sativa L. has been traditionally used for centuries as an analgesic and anti-inflammatory remedy also in different gastrointestinal disorders. This study aims to investigate the effects of different C. sativa isolated compounds in an in vitro model of intestinal epithelium. The ability of treatments to modulate markers of intestinal dysfunctions was tested on Caco-2 intestinal cell monolayers. Our results, obtained by evaluation of ROS production, TEER and paracellular permeability measurements and tight junctions evaluation show Cannabidiol as the most promising compound against intestinal inflammatory condition. Cannabidiol is able to inhibit ROS production and restore epithelial permeability during inflammatory and oxidative stress conditions, suggesting its possible application as adjuvant in IBD management.

19.
J Pharm Pharmacol ; 73(9): 1161-1168, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-33950239

ABSTRACT

OBJECTIVES: The exposure of neurons to an excessive excitatory stimulation induces the alteration of the normal neuronal function. Mood disorders are among the first signs of alterations in the central nervous system function. Magnolia officinalis bark extract has been extensively used in the traditional medicine systems of several countries, showing several pharmacological activities. Honokiol, the main constituent of M. officinalis, is a GABA modulator and a CB1 agonist, which is deeply investigated for its role in modulating mood disorders. METHODS: Thus, we evaluated the possible neuroprotective effect of a standardized M. officinalis bark extract (MOE), enriched in honokiol, and its effect on animal mood behavioural tests and in an in vitro model of excitotoxicity. KEY FINDINGS: MOE showed neuroprotective effect using SH-SY5Y cells, by normalizing brain-derived neurotrophic factor release. Then, we tested the effect of MOE in different behavioural tests evaluating anxiety and depression and we observed a selective anxiolytic-like effect. Finally, we confirmed the involvement of CB1 in the final effect of MOE by the co-administration of the CB1 antagonist, AM251. CONCLUSION: These results suggest that MOE could be considered an effective and safe anxiolytic candidate with neuroprotective activity.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/metabolism , Biphenyl Compounds/pharmacology , Lignans/pharmacology , Magnolia/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Behavior, Animal/drug effects , Biphenyl Compounds/therapeutic use , Brain , Brain-Derived Neurotrophic Factor/metabolism , GABA Modulators/pharmacology , GABA Modulators/therapeutic use , Humans , Lignans/therapeutic use , Male , Mice , Neuroprotective Agents/therapeutic use , Phytotherapy , Plant Bark/chemistry , Plant Extracts/therapeutic use , Receptor, Cannabinoid, CB1/antagonists & inhibitors
20.
Bioorg Med Chem Lett ; 41: 127969, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33771587

ABSTRACT

The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.


Subject(s)
Drug Development , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Binding Sites , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...