Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mucosal Immunol ; 15(6): 1296-1308, 2022 06.
Article in English | MEDLINE | ID: mdl-36071145

ABSTRACT

Monocyte-derived macrophages (Mφs) are crucial regulators during muscularis inflammation. However, it is unclear which micro-environmental factors are responsible for monocyte recruitment and anti-inflammatory Mφ differentiation in this paradigm. Here, we investigate Mφ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue-protective Mφs. Results showed that muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mφ subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mφs. Interestingly, we found that damage to the micro-environment upon muscularis inflammation resulted in EGC activation, which in turn stimulated monocyte infiltration and the consequent differentiation in anti-inflammatory CD206+ Mφs via CCL2 and CSF1, respectively. In addition, CSF1-CSF1R signaling was shown to be essential for the differentiation of monocytes into CD206+ Mφs and EGC proliferation during muscularis inflammation. Our study provides a comprehensive insight into pro-resolving Mφ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mφs, thereby highlighting pro-resolving Mφ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.


Subject(s)
Macrophages , Monocytes , Humans , Inflammation , Neuroglia , Anti-Inflammatory Agents
2.
Front Med (Lausanne) ; 8: 694268, 2021.
Article in English | MEDLINE | ID: mdl-34307422

ABSTRACT

Background: We previously showed increased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vagotomized mice. Here, we evaluated whether vagus nerve stimulation (VNS) is able to reduce the severity of DSS colitis and aimed to unravel the mechanism involved. Methods: Colitis was induced in wild type mice by 2.5% DSS administration in drinking water for 5 days. VNS (5 Hz, 1 ms, 1 mA) was applied 1 day prior to and after 4 days of DSS administration to evaluate changes in epithelial integrity and inflammatory response, respectively. Epithelial integrity was assessed using TUNEL and Ki67 staining. Monocytes, immature and mature macrophages were sorted from colonic samples and gene expression levels of pro-inflammatory cytokines were studied. Results: VNS applied prior to DSS administration (i.e., prophylactic VNS) reduced disease activity index (VNS 0.8 ± 0.6 vs. sham 2.8 ± 0.7, p < 0.001, n = 5) and tended to improve histology score. Prophylactic VNS significantly increased epithelial cell proliferation and diminished apoptosis compared to sham stimulation. VNS applied at day 4 during DSS administration (i.e., therapeutic VNS) decreased the influx of monocytes, monocyte-derived macrophages and neutrophils, and significantly reduced pro-inflammatory cytokine expression (i.e., Tnfα and Cxcl1) in immature macrophages compared to sham stimulation. Conclusions: A single period of VNS applied prior to DSS exposure reduced DSS-induced colitis by an improvement in epithelial integrity. On the other hand, VNS applied during the inflammatory phase of DSS colitis reduced cytokine expression in immature macrophages. Our data further underscores the potential of VNS as novel therapeutic approach for inflammatory bowel diseases.

3.
J Crohns Colitis ; 14(12): 1748-1758, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-32556102

ABSTRACT

BACKGROUND AND AIMS: Ulcerative colitis [UC] is associated with excessive neutrophil infiltration and collateral tissue damage, but the link is not yet completely understood. Since c-MET receptor tyrosine kinase [MET] is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor [HGF], we aimed to identify the function of HGF-MET signalling in neutrophils in UC patients and in mice during intestinal inflammation. METHODS: Serum and colonic biopsies from healthy controls and UC patients with active [Mayo endoscopic subscore 2-3] and inactive [Mayo endoscopic subscore 0-1] disease were collected to assess the level of serum and colonic HGF. Disease progression and immune cell infiltration were assessed during dextran sodium sulphate [DSS] colitis in wild-type and MRP8-Cre MET-LoxP mice. RESULTS: Increased mucosal HGF expression was detected in patients with active UC, and in mice during the inflammatory phase of DSS colitis. Similarly, serum HGF was significantly increased in active UC patients and positively correlated with C-reactive protein and blood neutrophil counts. Flow cytometric analysis also demonstrated an upregulation of colonic MET+ neutrophils during DSS colitis. Genetic ablation of MET in neutrophils reduced the severity of DSS-induced colitis. Concomitantly, there was a decreased number of TH17 cells, which could be due to a decreased production of IL-1ß by MET-deficient neutrophils. CONCLUSIONS: These data highlight the central role of neutrophilic HGF-MET signalling in exacerbating damage during intestinal inflammation. Hence, selective blockade of this pathway in neutrophils could be considered as a novel therapeutic approach in UC.


Subject(s)
Colitis, Ulcerative/genetics , Hepatocyte Growth Factor/pharmacology , Proto-Oncogene Proteins c-met/pharmacology , Signal Transduction/physiology , Symptom Flare Up , Animals , Belgium , Colitis, Ulcerative/physiopathology , Colon/metabolism , Colon/pathology , Colon/physiopathology , Disease Models, Animal , Flow Cytometry/methods , Flow Cytometry/statistics & numerical data , Hepatocyte Growth Factor/genetics , Male , Mice , Proto-Oncogene Proteins c-met/genetics , Signal Transduction/immunology
4.
Front Immunol ; 11: 551, 2020.
Article in English | MEDLINE | ID: mdl-32296441

ABSTRACT

Tissue resident intestinal macrophages are known to exhibit an anti-inflammatory phenotype and produce little pro-inflammatory cytokines upon TLR ligation, allowing symbiotic co-existence with the intestinal microbiota. However, upon acute events such as epithelial damage and concomitant influx of microbes, these macrophages must be able to quickly mount a pro-inflammatory response while more inflammatory macrophages are recruited from the blood stream simultaneously. Here, we show that dietary intake of vitamin A is required for the maintenance of the anti-inflammatory state of tissue resident intestinal macrophages. Interestingly, these anti-inflammatory macrophages were characterized by high levels of Dectin-1 expression. We show that Dectin-1 expression is enhanced by the vitamin A metabolite retinoic acid and our data suggests that Dectin-1 triggering might provide a switch to induce a rapid production of pro-inflammatory cytokines. In addition, Dectin-1 stimulation resulted in an altered metabolic profile which is linked to a pro-inflammatory response. Together, our data suggests that presence of vitamin A in the small intestine enhances an anti-inflammatory phenotype as well as Dectin-1 expression by macrophages and that this anti-inflammatory phenotype can rapidly convert toward a pro-inflammatory state upon Dectin-1 signaling.


Subject(s)
Inflammation/immunology , Intestines/immunology , Lectins, C-Type/immunology , Macrophages/immunology , Tretinoin/metabolism , Animals , Lectins, C-Type/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Signal Transduction/immunology , Tretinoin/pharmacology , Vitamin A/metabolism , Vitamin A/pharmacology
5.
Gut ; 68(8): 1406-1416, 2019 08.
Article in English | MEDLINE | ID: mdl-30472681

ABSTRACT

OBJECTIVES: Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN: Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS: EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION: Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER: NCT02425774.


Subject(s)
Benzofurans , Ileus , Intestine, Small , Muscle, Smooth , Pancreaticoduodenectomy/adverse effects , Postoperative Complications , Adult , Animals , Benzofurans/administration & dosage , Benzofurans/pharmacology , Disease Models, Animal , Female , Gastrointestinal Motility/drug effects , Humans , Ileus/etiology , Ileus/immunology , Ileus/physiopathology , Ileus/prevention & control , Inflammation/immunology , Inflammation/prevention & control , Intestine, Small/immunology , Intestine, Small/innervation , Intestine, Small/pathology , Intestine, Small/physiopathology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Muscle, Smooth/drug effects , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Pancreaticoduodenectomy/methods , Pilot Projects , Postoperative Complications/immunology , Postoperative Complications/physiopathology , Postoperative Complications/prevention & control , Serotonin 5-HT4 Receptor Agonists/administration & dosage , Serotonin 5-HT4 Receptor Agonists/pharmacology , Treatment Outcome , alpha7 Nicotinic Acetylcholine Receptor/metabolism
6.
PLoS One ; 13(5): e0197487, 2018.
Article in English | MEDLINE | ID: mdl-29791477

ABSTRACT

BACKGROUND: Oxazolone-induced colitis has been frequently used in literature as a model of IBD, but insights into the underlying immune response and pathological features are surprisingly still very limited. Vagus nerve stimulation (VNS) has proven to be effective in innate and Th1/Th17 predominant inflammatory models, including pre-clinical models of colitis, however to what extent VNS is also effective in ameliorating Th2-driven colitis remains to be studied. In the present study, we therefore further characterized the immune response in oxazolone-induced colitis and investigated the potential therapeutic effect of VNS. METHODS: Colitis was induced in Balb/c mice by cutaneous sensitization with 3% oxazolone followed by intracolonic administration of 1% oxazolone 7 days later. To evaluate the effect of VNS on the development of Th2-driven colitis, VNS and sham-treated mice were challenged with 1% oxazolone. RESULTS: Intracolonic oxazolone administration resulted in a severe destruction of the colonic mucosa and a rapid drop in body temperature leading to a 65% mortality rate at day 5. Severe infiltration of neutrophils and monocytes was detected 6h after oxazolone administration which was associated with a Th2-type inflammatory response. VNS significantly improved survival rate which correlated with decreased levels of HMGB1 and reduced colonic (il6 and cxcl1 mRNA) and serum cytokine levels (IL-6, TNFα and CXCL1) compared to sham treated mice. CONCLUSIONS: Oxazolone-induced colitis rather represents a model of sepsis and, at best, may resemble a severe type of ulcerative colitis, associated with early and severe mucosal damage and a high mortality rate. VNS reduces colonic inflammation and improves survival in this model, supporting the anti-inflammatory properties of VNS, even in an aggressive model as oxazolone-induced colitis.


Subject(s)
Colitis/physiopathology , Colitis/therapy , Vagus Nerve Stimulation , Animals , Colitis/chemically induced , Colitis/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Hypothermia/complications , Hypothermia/immunology , Hypothermia/pathology , Hypothermia/physiopathology , Inflammation/complications , Inflammation/pathology , Intestinal Mucosa/pathology , Mice, Inbred BALB C , Natural Killer T-Cells/immunology , Oxazolone , Survival Analysis
7.
Gut ; 66(12): 2098-2109, 2017 12.
Article in English | MEDLINE | ID: mdl-28615302

ABSTRACT

OBJECTIVE: Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility. DESIGN: IM was performed in mice with defective monocyte migration to tissues (C-C motif chemokine receptor 2, Ccr2-/ - mice) and wild-type (WT) mice to study the role of monocytes and monocyte-derived macrophages (MΦs) during onset and resolution of ME inflammation. RESULTS: At early time points, IM-induced GI transit delay and inflammation were equal in WT and Ccr2 -/- mice. However, GI transit recovery after IM was significantly delayed in Ccr2 -/- mice compared with WT mice, associated with increased neutrophil-mediated immunopathology and persistent impaired neuromuscular function. During recovery, monocyte-derived MΦs acquire pro-resolving features that aided in the resolution of inflammation. In line, bone marrow reconstitution and treatment with MΦ colony-stimulating factor 1 enhanced monocyte recruitment and MΦ differentiation and ameliorated GI transit in Ccr2 -/- mice. CONCLUSION: Our study reveals a critical role for monocyte-derived MΦs in restoring intestinal homeostasis after surgical trauma. From a therapeutic point of view, our data indicate that inappropriate targeting of monocytes may increase neutrophil-mediated immunopathology and prolong the clinical outcome of POI, while future therapies should be aimed at enhancing MΦ physiological repair functions.


Subject(s)
Ileus/immunology , Ileus/pathology , Macrophages/immunology , Monocytes/immunology , Postoperative Complications/immunology , Postoperative Complications/pathology , Receptors, CCR2/immunology , Animals , Cell Differentiation , Cell Movement , Disease Models, Animal , Gastrointestinal Motility , Gastrointestinal Transit , Homeostasis/immunology , Inflammation/immunology , Inflammation/pathology , Mice , Muscle, Smooth/pathology
9.
J Immunol ; 198(5): 2172-2181, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28100682

ABSTRACT

The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article, we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro, respectively. Furthermore, our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells, along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover, we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion, our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.


Subject(s)
Dendritic Cells/immunology , Diet , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Isoenzymes/metabolism , Retinal Dehydrogenase/metabolism , T-Lymphocytes, Regulatory/immunology , Aldehyde Dehydrogenase 1 Family , Animals , Cells, Cultured , Fatty Acids, Volatile/metabolism , Immune Tolerance , Immunity, Mucosal , Immunoglobulin A/metabolism , Isoenzymes/genetics , Mice , Mice, Inbred C57BL , Microbiota , Receptors, G-Protein-Coupled/genetics , Receptors, Nicotinic/genetics , Retinal Dehydrogenase/genetics , Vitamin A/metabolism
10.
Cell Rep ; 15(12): 2809-24, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27332875

ABSTRACT

The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens.


Subject(s)
Bacteria/metabolism , Dietary Fiber/pharmacology , Fatty Acids, Volatile/metabolism , Food Hypersensitivity/immunology , Food Hypersensitivity/prevention & control , Immune Tolerance/drug effects , Signal Transduction/drug effects , Animals , Antigens, CD/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Feeding Behavior , Gastrointestinal Microbiome/drug effects , Immunoglobulin A/immunology , Integrin alpha Chains/metabolism , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Vitamin A/metabolism
11.
J Immunol ; 196(12): 5148-55, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27183576

ABSTRACT

Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines.


Subject(s)
Intestine, Small/immunology , Lymphocyte Subsets/immunology , Lymphoid Tissue/immunology , Vitamin A Deficiency/immunology , Vitamin A/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Immunity, Innate , Intestine, Small/cytology , Intestine, Small/drug effects , Lymphocyte Subsets/drug effects , Lymphoid Tissue/cytology , Lymphoid Tissue/drug effects , Lymphoid Tissue/metabolism , Mice , Natural Cytotoxicity Triggering Receptor 1/deficiency , Natural Cytotoxicity Triggering Receptor 1/genetics , Natural Cytotoxicity Triggering Receptor 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/analysis , Signal Transduction , Tretinoin/metabolism , Vitamin A/administration & dosage
12.
J Physiol ; 594(20): 5771-5780, 2016 10 15.
Article in English | MEDLINE | ID: mdl-26959627

ABSTRACT

The main task of the immune system is to distinguish and respond accordingly to 'danger' or 'non-danger' signals. This is of critical importance in the gastrointestinal tract in which immune cells are constantly in contact with food antigens, symbiotic microflora and potential pathogens. This complex mixture of food antigens and symbionts are essential for providing vital nutrients, so they must be tolerated by the intestinal immune system to prevent aberrant inflammation. Therefore, in the gut the balance between immune activation and tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent hypersensitivity to harmless luminal antigens. Loss of this delicate equilibrium can lead to abnormal activation of the intestinal immune system resulting in devastating gastrointestinal disorders such as inflammatory bowel disease (IBD). Recent evidence supports the idea that the central nervous system interacts dynamically via the vagus nerve with the intestinal immune system to modulate inflammation through humoral and neural pathways, using a mechanism also referred to as the intestinal cholinergic anti-inflammatory pathway. In this review, we will focus on the current understanding of the mechanisms and neuronal circuits involved in the intestinal cholinergic anti-inflammatory pathway. Further investigation on the crosstalk between the nervous and intestinal immune system will hopefully provide new insights leading to the identification of innovative therapeutic approaches to treat intestinal inflammatory diseases.


Subject(s)
Cholinergic Agents/immunology , Immunity, Innate/immunology , Inflammation/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/innervation , Animals , Central Nervous System/immunology , Humans , Inflammatory Bowel Diseases/immunology , Neurons/immunology
13.
Eur J Immunol ; 45(1): 89-100, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25311225

ABSTRACT

The vitamin A metabolite retinoic acid (RA) has been reported to suppress Th1 responses and enhance Th2 responses. Here, we investigated whether differences in vitamin A metabolism could underlie the differences between C57BL/6 and BALB/c mice, which are reportedly seen as Th1 and Th2 responders, respectively. BALB/c mice were shown to have higher intestinal epithelial expression of RALDH1 (where RALDH is retinaldehyde dehydrogenase), and, consequently, higher RALDH activity in MLN-DCs, leading to an increased ability to induce IgA class switching in B cells. Furthermore, within BALB/c mice, induction of IgA secretion as well as increased accumulation of regulatory T cells (Treg) in the intestinal lamina propria was observed. Additionally, as BALB/c mice are more resistant to dextran sulphate sodium (DSS) induced colitis, mice that lacked vitamin A in their diet had a more severe form of DSS-induced colitis compared to control mice. Therefore, the level of RA production and consequently the degree of RA-mediated signaling is crucial for the efficiency of the mucosal immune system.


Subject(s)
Colitis/immunology , Immunity, Mucosal , Intestines/immunology , Isoenzymes/immunology , Mucous Membrane/immunology , Retinal Dehydrogenase/immunology , Vitamin A/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Dextran Sulfate , Gene Expression , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin Class Switching , Intestinal Mucosa/metabolism , Intestines/pathology , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mucous Membrane/metabolism , Mucous Membrane/pathology , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Signal Transduction , Species Specificity , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/pathology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/pathology , Vitamin A/administration & dosage
14.
Elife ; 32014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407678

ABSTRACT

Non-hematopoietic lymph node stromal cells shape immunity by inducing MHC-I-dependent deletion of self-reactive CD8+ T cells and MHC-II-dependent anergy of CD4+ T cells. In this study, we show that MHC-II expression on lymph node stromal cells is additionally required for homeostatic maintenance of regulatory T cells (Tregs) and maintenance of immune quiescence. In the absence of MHC-II expression in lymph node transplants, i.e. on lymph node stromal cells, CD4+ as well as CD8+ T cells became activated, ultimately resulting in transplant rejection. MHC-II self-antigen presentation by lymph node stromal cells allowed the non-proliferative maintenance of antigen-specific Tregs and constrained antigen-specific immunity. Altogether, our results reveal a novel mechanism by which lymph node stromal cells regulate peripheral immunity.

15.
Nature ; 508(7494): 123-7, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670648

ABSTRACT

The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.


Subject(s)
Fetus/immunology , Immunity, Innate/immunology , Prenatal Exposure Delayed Effects/immunology , Tretinoin/immunology , Tretinoin/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Diet , Female , Fetus/drug effects , Immunity, Innate/drug effects , Lymphoid Tissue/cytology , Lymphoid Tissue/drug effects , Lymphoid Tissue/embryology , Lymphoid Tissue/immunology , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Retinoic Acid/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tretinoin/administration & dosage , Tretinoin/metabolism
16.
Acta Neuropathol ; 128(2): 267-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24356983

ABSTRACT

Multiple sclerosis (MS) is a chronic neuro-inflammatory disorder, which is marked by the invasion of the central nervous system by monocyte-derived macrophages and autoreactive T cells across the brain vasculature. Data from experimental animal models recently implied that the passage of leukocytes across the brain vasculature is preceded by their traversal across the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus. The correlation between the presence of leukocytes in the CSF of patients suffering from MS and the number of inflammatory lesions as detected by magnetic resonance imaging suggests that inflammation at the choroid plexus contributes to the disease, although in a yet unknown fashion. We here provide first insights into the involvement of the choroid plexus in the onset and severity of the disease and in particular address the role of the tight junction protein claudin-3 (CLDN3) in this process. Detailed analysis of human post-mortem brain tissue revealed a selective loss of CLDN3 at the choroid plexus in MS patients compared to control tissues. Importantly, mice that lack CLDN3 have an impaired BCSFB and experience a more rapid onset and exacerbated clinical signs of experimental autoimmune encephalomyelitis, which coincides with enhanced levels of infiltrated leukocytes in their CSF. Together, this study highlights a profound role for the choroid plexus in the pathogenesis of multiple sclerosis, and implies that CLDN3 may be regarded as a crucial and novel determinant of BCSFB integrity.


Subject(s)
Choroid Plexus/physiopathology , Claudin-3/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Multiple Sclerosis/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Brain/blood supply , Brain/pathology , Brain/physiopathology , Choroid Plexus/pathology , Claudin-3/genetics , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Middle Aged , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Severity of Illness Index
17.
Eur J Immunol ; 43(6): 1608-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23519987

ABSTRACT

The vitamin A metabolite retinoic acid is important for the function of the adaptive immune system, but the mechanism is not completely understood. Here we show that vitamin A is essential for the generation of Notch-dependent CD8(-) dendritic cells (DCs) in the spleen. We observed that CD8(-) CD4(-) (double negative (DN)) and CD4(+) DCs, but not CD8(+) DCs, express vitamin A regulated genes. To determine whether vitamin A levels influence splenic DC development, we generated mice that were fed a vitamin A-deficient diet. We detected a specific reduction of CD4(+) and DN DCs in the spleens of mice fed a vitamin A-deficient diet, while pre-DC numbers in both spleen and bone marrow were not affected. Vitamin A was specifically necessary for the development of RelB(high) , Notch-dependent CD4(+) , and DN DCs. In addition, DN DCs showed reduced proliferation during vitamin A deficiency. In contrast, mice that had received a diet with increased amounts of retinoic acid showed a significant expansion of Notch-dependent DN DCs. These data demonstrate that vitamin A stimulates the development of Notch-dependent splenic DCs and indicate that inefficient generation of DCs may contribute to the immune deficits observed during vitamin A deficiency.


Subject(s)
Dendritic Cells/immunology , Tretinoin/immunology , Vitamin A Deficiency/immunology , Animals , CD4 Antigens/immunology , CD8 Antigens/immunology , Cell Differentiation , Cell Lineage , Cell Proliferation , Feeding Behavior , Female , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Notch/metabolism , Spleen/cytology , Transcription Factor RelB/metabolism
18.
J Immunol ; 186(4): 1934-42, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21220692

ABSTRACT

The vitamin A metabolite retinoic acid (RA) plays a crucial role in mucosal immune responses. We demonstrate in this study that RA-producing retinaldehyde dehydrogenase (RALDH) enzymes are postnatally induced in mesenteric lymph node (MLN) dendritic cells (DCs) and MLN stromal cells. RALDH enzyme activity in lamina propria-derived CD103(+) MLN-DCs did not depend on TLR signaling. Remarkably, RA itself could directly induce RALDH2 in both DCs and stromal cells in vitro. Furthermore, upon provision of a vitamin A-deficient diet, it was found that RA-mediated signaling was strongly reduced within the small intestines, while RALDH2 mRNA and RALDH enzyme activity in lamina propria DCs and MLN-DCs, as well as RALDH2 mRNA expression in MLN stromal cells, were strongly diminished. Moreover, supply of vitamin A to vitamin A-deficient mice restored RA-mediated signaling in the intestine and RALDH activity in lamina propria-derived CD103(+) MLN-DCs. Our results show that RA-dependent signaling within the intestine is indispensable for RALDH activity in the draining MLN.


Subject(s)
Aldehyde Oxidoreductases/biosynthesis , Gene Expression Regulation/immunology , Intestinal Mucosa/enzymology , Intestine, Small/enzymology , Lymph Nodes/enzymology , Retinal Dehydrogenase/biosynthesis , Tretinoin/physiology , Vitamin A/physiology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/physiology , Animal Feed , Animals , Dendritic Cells/enzymology , Dendritic Cells/immunology , Dendritic Cells/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestine, Small/immunology , Intestine, Small/pathology , Lymph Nodes/immunology , Lymph Nodes/pathology , Mesentery/enzymology , Mesentery/immunology , Mesentery/pathology , Mice , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/physiology , Stromal Cells/enzymology , Stromal Cells/immunology , Stromal Cells/pathology , Vitamin A/administration & dosage , Vitamin A Deficiency/enzymology , Vitamin A Deficiency/immunology , Vitamin A Deficiency/pathology
19.
Blood ; 116(26): 5907-18, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-20923969

ABSTRACT

Talin1 is a key integrin coactivator. We investigated the roles of this cytoskeletal adaptor and its target integrins in B-cell lymphogenesis, differentiation, migration, and function. Using CD19 Cre-mediated depletion of talin1 selectively in B cells, we found that talin1 was not required for B-cell generation in the bone marrow or for the entry of immature B cells to the white pulp of the spleen. Loss of talin1 also did not affect B-cell maturation into follicular B cells but compromised differentiation of marginal zone B cells. Nevertheless, serum IgM and IgG levels remained normal. Ex vivo analysis of talin1-deficient spleen B cells indicated a necessary role for talin1 in LFA-1 and VLA-4 activation stimulated by canonical agonists, but not in B-cell chemotaxis. Consequently, talin1 null B splenocytes could not enter lymph nodes nor return to the bone marrow. Talin1 deficiency in B cells was also impaired in the humoral response to a T cell-dependent antigen. Collectively, these results indicate that talin1 is not required for follicular B-cell maturation in the spleen or homeostatic humoral immunity but is critical for integrin-dependent B lymphocyte emigration to lymph nodes and optimal immunity against T-dependent antigens.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Bone Marrow/growth & development , Integrins/metabolism , Lymph Nodes/cytology , Spleen/cytology , Talin/physiology , Animals , Bone Marrow/immunology , Cell Adhesion , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemotaxis, Leukocyte , Female , Flow Cytometry , Immunization , Integrin alpha4beta1/metabolism , Lymph Nodes/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Male , Mice , Mice, Knockout , Spleen/immunology
20.
Nat Immunol ; 10(11): 1193-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19783990

ABSTRACT

The location of embryonic lymph node development is determined by the initial clustering of lymphoid tissue-inducer (LTi) cells. Here we demonstrate that both the chemokine CXCL13 and the chemokine CCL21 attracted LTi cells at embryonic days 12.5-14.5 and that initial clustering depended exclusively on CXCL13. Retinoic acid (RA) induced early CXCL13 expression in stromal organizer cells independently of lymphotoxin signaling. Notably, neurons adjacent to the lymph node anlagen expressed enzymes essential for RA synthesis. Furthermore, stimulation of parasymphathetic neural output in adults led to RA receptor (RAR)-dependent induction of CXCL13 in the gut. Therefore, our data show that the initiation of lymph node development is controlled by RA-mediated expression of CXCL13 and suggest that RA may be provided by adjacent neurons.


Subject(s)
Chemokine CXCL13/metabolism , Lymph Nodes/embryology , Neurons/metabolism , Tretinoin/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cell Differentiation , Cell Movement , Cells, Cultured , Chemokine CCL21/metabolism , Embryo, Mammalian/embryology , Female , Isoenzymes/metabolism , Lymphoid Tissue/embryology , Mice , Mice, Inbred BALB C , Mice, Knockout , Retinal Dehydrogenase , Stromal Cells/metabolism , Vagus Nerve Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...