Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Pharm Sci ; 20(3): 165-175, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37417199

ABSTRACT

Objectives: Xanthohumol (XH) is a prenylated chalcone available naturally and has diverse pharmacological activities. It has some limitations in the physiological environment such as biotransformation and less gastrointestinal tract absorption. To overcome the limitations, we prepared nanoformulations [solid lipid nanoparticles (SLNs)] of XH. Therefore, an analytical method is required for the estimation of XH in the bulk nanoformulations, so we developed and validated a quality by design (QbD)-based ultraviolet (UV)-spectrophotometric method as per the International Conference of Harmonization (ICH) Q2 (R1) guidelines. Materials and Methods: The new analytical Qbd based UV-visible spectrophotometric technique is developed and validated for estimation of XH in bulk and SLNs as per ICH guidelines Q2 (R1). Critical method variables are selected on the basis of risk assessment studies. Optimization of method variables was performed using the a central composite design (CCD) model. Results: Multiregression ANOVA analysis showed an R2 value of 0.8698, which is nearer to 1, indicating that the model was best fitted. The optimized method by CCD was validated for its linearity, precision, accuracy, repeatability, limit of detection (LOD), limit of quantification (LOQ), and specificity. All validated parameters were found to be within the acceptable limits [% relative standard deviation (RSD) <2]. The method was linear between 2-12 g/mL concentration with R2 value 0.9981. Method was accurate with percent recovery 99.3-100.1%. LOD and LOQ were found to be 0.77 and 2.36 µg/mL, respectively. The precision investigation confirmed that the method was precise with %RSD <2. Conclusion: The developed and validated method was applied to estimate XH in bulk and SLNs. The developed method was specific to XH, which was confined by the specificity study.

2.
Pharmaceutics ; 14(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36365221

ABSTRACT

Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.

3.
Heliyon ; 8(5): e09403, 2022 May.
Article in English | MEDLINE | ID: mdl-35663739

ABSTRACT

Investigators were continuously creating novel nanotechnologies to address unmet requirements throughout the administration of therapeutic medicines & imaging agents for cancer treatment & diagnostics, appropriately. LNPs(Lipid nanoparticles) are legitimate particulates (approx. 100 nm in size) gathered from various lipid as well as other biochemical compounds which overall functionality to resolve biological barriers (biobarriers), allowing LNPs to selectively collect somewhere outside of disease-target cells again for responsive therapeutics. Most pharmaceutically important compounds were insoluble throughout water solutions, were chemical & physiologically unstable, or have toxicities. Among the most potential drug carrier for bioactive organic compounds is LBNPs (Lipid based nanoparticles) technologies. Its present use in chemotherapy have transformed treatment for cancer by increasing the antitumor effect of a number of chemotherapeutics. Because they may be created using naturally occurring sources, LBNPs have great temporal and thermal stability, maximum load potential, simplicity of preparations, cheap manufacturing costs, & big manufacturing output. Furthermore, combining chemotherapeutic drugs with LNPs reduces active therapeutic dosage and toxicities, lowers treatment resistance, & raises drug concentration in tumour cells while reducing concentrations in normal tissue. LBNPs were widely studied in cancer treatment, both in vitro and in vivo, with encouraging outcomes in certain clinical trials. This study provides an overview of the many types of LBNPs which have been created in latest years and their applications and contributions in different types of cancers.

4.
Bioorg Chem ; 91: 103143, 2019 10.
Article in English | MEDLINE | ID: mdl-31374528

ABSTRACT

Coumarin-based different series of hydrazone derivatives were synthesized and evaluated for anticancer activity against four different human cancer cell lines. The activity of the compounds were compared with doxorubicin as a standard drug and all the compounds exhibited good to moderate cytotoxicity with IC50 values ranging from 6.07 to 60.45 µM against all the examined cancer cell lines. Based on the screening results, it was concluded that the compounds 12a and 18a were the most promising medicinal entities. In vitro tubulin polymerisation inhibition assay was performed for the compounds 12a and 18a and these two compounds displayed good potency when compared with colchicine as the standard drug. The interaction of these compounds with tubulin protein was also studied with the help of molecular docking technique using Discovery studio software. Furthermore, the molecular and ADMET properties of the compounds were computed with Osiris property software and PreADMET server. The compounds exhibited exciting in vitro and in silico results. Hence we propose that the compounds 12a and 18a could be developed as tubulin targeted potential antiproliferative agents.


Subject(s)
Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Coumarins/chemistry , Drug Design , Hydrazones/chemistry , Neoplasms/drug therapy , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology , Tubulin/chemistry , Cell Proliferation , Computer Simulation , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Bioorg Med Chem Lett ; 29(14): 1819-1824, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31104996

ABSTRACT

A series of novel 4,7-dihydroxycoumarin based acryloylcyanohydrazone derivatives were synthesized and evaluated for antiproliferative activity against four different cancer cell lines (A549, HeLa, SKNSH, and MCF7). Most of the compounds displayed potent cytotoxicity with IC50 values ranging from 3.42 to 31.28 µM against all the tested cancer cell lines. The most active compound, 8h was evaluated for pharmacological mechanistic studies on cell cycle progression and tubulin polymerization inhibition assay. The results revealed that the compound 8h induced the cell cycle arrest at G2/M phase and inhibited tubulin polymerization with IC50 = 6.19 µM. Experimental data of the tubulin polymerization inhibition assay was validated by molecular docking technique and the results exhibited strong hydrogen bonding interactions with amino acids (ASN-101, TYR-224, ASN-228, LYS-254) of tubulin.


Subject(s)
Antineoplastic Agents/therapeutic use , Coumarins/chemical synthesis , Coumarins/therapeutic use , Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Drug Design , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...