Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37178285

ABSTRACT

Electrical and electronic equipment like light bulbs, computing systems, gaming systems, DVD players, and drones experiences heat generation during extensive use. The heat energy should be liberated to ensure uninterrupted performance and prevent premature failure of the devices. This study uses an experimental setup of the heat sink, phase change material, silicon carbide nanoparticles, thermocouple, and data acquisition system to control heat generation and increase heat lost to the surroundings in electronic equipment. The silicon carbide nanoparticles are mixed in varying compositions, i.e., 1wt.%, 2wt.%, and 3wt.%, in paraffin wax as the phase change material. The influence of the heat input (15W, 20W, 35W, and 45W) through the plate heater is also studied. The operating temperature of the heat sink was allowed to fluctuate between 45 and 60 °C while experimenting. The fluctuation in the temperature of the heat sink was recorded to monitor and compare the charging, dwell, and discharging periods in the heat sink. It is observed that increasing the percentage composition of silicon carbide nanoparticles in the paraffin wax resulted in increasing the peak temperature and the dwell period of the heat sink. Increasing the heat input above 15W benefited in controlling the duration of the thermal cycle. It is inferred that high heat input is beneficial in enhancing the heating period, while the percentage composition of silicon carbide in the PCM benefits by increasing the heat sink's peak temperature and dwell period. It is concluded that high heat input, i.e., 45W, is beneficial in enhancing the heating period, while the percentage composition of silicon carbide in the PCM benefits by increasing the heat sink's peak temperature and dwell period.

SELECTION OF CITATIONS
SEARCH DETAIL