Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Chembiochem ; 25(13): e202400224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38668376

ABSTRACT

Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Amyloid/metabolism , Amyloid/antagonists & inhibitors , Amyloid/chemistry , Amyloidogenic Proteins/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/antagonists & inhibitors , Theranostic Nanomedicine , Animals
2.
J Pept Sci ; 30(8): e3601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591712

ABSTRACT

Cytosine-rich DNA sequences can fold into intercalated motifs known as i-motifs, through noncanonical hydrogen bonding interactions. Molecular probes can provide valuable insights into the conformational stability and potential cellular functions of i-motifs. W5K5, a decapeptide composed of alternating tryptophan (W) and lysine (K) units, has been identified as a lead candidate to modulate the structural dynamics of the hypoxia-inducible factor 1-alpha (HIF-1α) DNA i-motif. This finding is expected to facilitate the rational design of peptide-based probes for studying the structure and functional dynamics of i-motifs.


Subject(s)
DNA , Hypoxia-Inducible Factor 1, alpha Subunit , Tryptophan , Tryptophan/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , DNA/chemistry , Humans , Peptides/chemistry , Hydrogen Bonding , Nucleotide Motifs , Nucleic Acid Conformation
3.
Mater Horiz ; 11(13): 3082-3089, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38647314

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects learning, memory, and cognition. Current treatments targeting amyloid-ß (Aß) and tau have shown limited effectiveness, necessitating further research on the aggregation and toxicity mechanisms. One of these mechanisms involves the liquid-liquid phase separation (LLPS) of tau, contributing to the formation of pathogenic tau aggregates, although their conformational details remain elusive. Another mechanism is ferroptosis, a type of iron-dependent lipid peroxidation-mediated cell death, which has been implicated in AD. There is a lack of therapeutic strategies that simultaneously target amyloid toxicity and ferroptosis. This study aims to explore the potential of polycatechols, PDP and PLDP, consisting of dopamine and L-Dopa, respectively, as multifunctional agents to modulate the pathological nexus between ferroptosis and AD. Polycatechols were found to sequester the labile iron pool (LIP), inhibit Aß and tau aggregation, scavenge free radicals, protect mitochondria, and prevent ferroptosis, thereby rescuing neuronal cell death. Interestingly, PLDP promotes tau LLPS, and modulates their intermolecular interactions to inhibit the formation of toxic tau aggregates, offering a conceptually innovative approach to tackle tauopathies. This is a first-of-its-kind polymer-based integrative approach that inhibits ferroptosis, counteracts amyloid toxicity, and modulates tau LLPS to mitigate the multifaceted toxicity of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Ferroptosis , tau Proteins , Ferroptosis/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , tau Proteins/metabolism , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Iron/metabolism , Dopamine/metabolism , Levodopa/pharmacology , Animals , Lipid Peroxidation/drug effects , Phase Separation
4.
Chem Commun (Camb) ; 60(32): 4334-4337, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38545836

ABSTRACT

Molecular tools that modulate tau liquid-liquid phase separation (LLPS) promise to treat tauopathies. We screened a set of polyphenols and demonstrated concentration-dependent biphasic modulation of tau LLPS by gallic acid (GA), showcasing its ability to expedite the liquid-to-gel transition in tau condensates and effectively impede the formation of deleterious fibrillar aggregates.


Subject(s)
Alzheimer Disease , Polyphenols , Humans , Phase Separation , Cytoskeleton , tau Proteins
5.
Redox Biol ; 71: 103119, 2024 May.
Article in English | MEDLINE | ID: mdl-38507972

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the build-up of extracellular amyloid ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs). Ferroptosis, an iron (Fe)-dependent form of cell death plays a significant role in the multifaceted AD pathogenesis through generation of reactive oxygen species (ROS), mitochondrial damage, lipid peroxidation, and reduction in glutathione peroxidase 4 (GPX4) enzyme activity and levels. Aberrant liquid-liquid phase separation (LLPS) of tau drives the growth and maturation of NFTs contributing to AD pathogenesis. In this study, we strategically combined the structural and functional properties of gallic acid (GA) and cyclic dipeptides (CDPs) to synthesize hybrid molecules that effectively target both ferroptosis and amyloid toxicity in AD. This innovative approach marks a paradigm shift from conventional therapeutic strategies. This is the first report of a synthetic small molecule (GCTR) that effectively combats ferroptosis, simultaneously restoring enzymatic activity and enhancing cellular levels of its master regulator, GPX4. Further, GCTR disrupts Fe3+-induced LLPS of tau, and aids in attenuation of abnormal tau fibrillization. The synergistic action of GCTR in combating both ferroptosis and amyloid toxicity, bolstered by GPX4 enhancement and modulation of Fe3+-induced tau LLPS, holds promise for the development of small molecule-based novel therapeutics for AD.


Subject(s)
Alzheimer Disease , Ferroptosis , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid
6.
RSC Chem Biol ; 5(2): 71-72, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38333192

ABSTRACT

Thimmaiah Govindaraju introduces the themed collection on molecular and nanotheranostics.

7.
Nanoscale ; 16(6): 2993-3005, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38259156

ABSTRACT

The aggregation of amyloid proteins in the brain is a significant neurotoxic event that contributes to neurodegenerative disorders. The aggregation of amyloid beta (Aß), particularly Aß42 monomers, into various forms such as oligomers, protofibrils, fibrils, and amyloid plaques is a key pathological feature in Alzheimer's disease. As a result, Aß42 is a primary target and the development of molecular strategies for the dissolution of Aß42 aggregates is considered a promising approach to mitigating Alzheimer's disease pathology. A set of pyrene-conjugated peptidomimetics derived from Aß14-23 (AkdcPy, AkdmPy, and AkdnPy) by incorporating an unnatural amino acid [kd: cyclo(Lys-Asp)] were studied for their ability to modulate Aß42 aggregation. AkdcPy and AkdmPy formed vesicular structures in aqueous media. The vesicles of AkdmPy loaded with the neuroprotective compound berberine (Ber), dissipated mutually in the presence of preformed Aß42 fibrils. During this process, the active drug Ber was released. This work is expected to inspire the development of drug-loaded peptidomimetic-based therapeutic formulations to modulate disorders associated with amyloid toxicity.


Subject(s)
Alzheimer Disease , Peptidomimetics , Humans , Amyloid beta-Peptides/chemistry , Alzheimer Disease/metabolism , Peptidomimetics/therapeutic use , Peptide Fragments/chemistry , Amyloid/chemistry
8.
Cell Mol Life Sci ; 81(1): 33, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214819

ABSTRACT

P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.


Subject(s)
G-Quadruplexes , Mitogen-Activated Protein Kinase 12 , Triple Negative Breast Neoplasms , Humans , Gene Expression Regulation , Promoter Regions, Genetic , Triple Negative Breast Neoplasms/genetics , Mitogen-Activated Protein Kinase 12/genetics
9.
ACS Bio Med Chem Au ; 3(6): 471-479, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38144254

ABSTRACT

Efficient delivery of bioactive ingredients into cells is a major challenge. Cell-penetrating peptides (CPPs) have emerged as promising vehicles for this purpose. We have developed novel CPPs derived from the flexible and disordered tail extensions of DNA-binding Ku proteins. Ku-P4, the lead CPP identified in this study, is biocompatible and displays high internalization efficacy. Biophysical studies show that the proline residue is crucial for preserving the intrinsically disordered state and biocompatibility. DNA binding studies showed effective DNA condensation to form a positively charged polyplex. The polyplex exhibited effective penetration through the cell membrane and delivered the plasmid DNA inside the cell. These novel CPPs have the potential to enhance the cellular uptake and therapeutic efficacy of peptide-drug or gene conjugates.

10.
RSC Chem Biol ; 4(11): 826-849, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920393

ABSTRACT

Theranostics, the integration of therapy and diagnostics into a single entity for the purpose of monitoring disease progression and treatment response. Diagnostics involves identifying specific characteristics of a disease, while therapeutics refers to the treatment of the disease based on this identification. Advancements in medicinal chemistry and technology have led to the development of drug modalities that provide targeted therapeutic effects while also providing real-time updates on disease progression and treatment. The inclusion of imaging in therapy has significantly improved the prognosis of devastating diseases such as cancer and neurodegeneration. Currently, theranostic treatment approaches are based on nuclear medicine, while nanomedicine and a wide diversity of macromolecular systems such as gels, polymers, aptamers, and dendrimer-based agents are being developed for the purpose. Theranostic agents have significant roles to play in both early-stage drug development and clinical-stage therapeutic-containing drug candidates. This review will briefly outline the pros and cons of existing and evolving theranostic approaches before comprehensively discussing the role of small molecules and their conjugates.

11.
Nanoscale ; 15(43): 17386-17397, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37847391

ABSTRACT

The most promising alternative for next-generation molecular computers is biocomputing, which uses DNAs as its primary building blocks to perform a Boolean operation. DNA nanoclusters (NCs) have emerged as promising candidates for biosensing applications due to their unique self-assembly properties and programmability. It has been demonstrated that adding DNA overhangs to DNA NCs improves their adaptability in identifying specific biomolecular interactions. A recent proposal in DNA computing is the concept of "contrary logic pairs (CLPs)" executed by employing a DNA hybrid architecture as a universal platform. We have designed thymine overhang-modified DNA-templated NCs (T-Au/Ag NCs). These NCs serve as a chemosensing ensemble platform, where the presence of HgII ions mediates the formation of M-Au/Ag NCs. The resulting NCs exhibit the capability to drive elementary CLPs (YES, NOT, OR, NOR, INH and IMP) as well as complex logic operations (XOR and XNOR). Additionally, they can be utilized for advanced non-arithmetic DNA logic devices like a parity generator (pG) and a parity checker (pC) for "error detection". Bit errors are an unavoidable and common occurrence during any computing. A cascade of XOR operations was used to evaluate these errors by introducing the pG and pC at the transmitting (TX) and receiving (RX) ends in binary transmission, respectively, which has devastating implications for reliable logic circuits, especially in advanced logic computation. Moreover, an even/odd natural number from 0 to 9 distinguishable pC was designed based on a dual-source responsive computing platform. This work offers inspiring avenues for a cost-effective strategy to construct highly-intelligent DNA computing devices by enhancing the multi-input responsive single DNA platform concept.


Subject(s)
DNA , Logic , DNA Replication , Computers, Molecular
12.
ACS Appl Mater Interfaces ; 15(43): 49953-49963, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37847862

ABSTRACT

Stimuli-responsive drug delivery systems are gaining importance in personalized medicine to deliver therapeutic doses in response to disease-specific stimulation. Pancreas-mimicking glucose-responsive insulin delivery systems offer improved therapeutic outcomes in the treatment of type 1 and advanced stage of type 2 diabetic conditions. Herein, we present a glucose-responsive smart hydrogel platform based on phenylboronic acid-functionalized natural silk fibroin protein for regulated insulin delivery. The modified protein was synergistically self-assembled and cross-linked through ß-sheet and phenylboronate ester formation. The dynamic nature of the bonding confers smooth injectability through the needle. The cross-linked hydrogel structures firmly hold the glucose-sensing element and insulin in its pores and contribute to long-term sensing and drug storage. Under hyperglycemic conditions, the hydrogen peroxide generated from the sensing element induces hydrogel matrix degradation by oxidative cleavage, enabling insulin release. In vivo studies in a type 1 diabetic Wistar rat model revealed that the controlled insulin release from the hydrogel restored diabetic glucose level to physiological conditions for 36 h. This work establishes the functional modification of silk fibroin into a glucose-responsive hydrogel platform for regulated and functional insulin delivery application.


Subject(s)
Diabetes Mellitus , Fibroins , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Insulin/pharmacology , Insulin/chemistry , Glucose/chemistry , Fibroins/chemistry , Rats, Wistar , Silk
13.
Chem Sci ; 14(35): 9427-9438, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712018

ABSTRACT

Ferroptosis, an iron-dependent cell death, plays a crucial role in the pathology of Alzheimer's disease (AD). Several characteristics of AD, including excessive iron accumulation, elevated lipid peroxide and reactive oxygen species (ROS) levels, and decreased glutathione peroxidase 4 (GPX4) levels, align with the features of ferroptosis. While traditional methods of inhibiting ferroptosis have centered on chelating Fe and trapping radicals, therapeutic strategies that modulate the GPX4 axis to mitigate ferroptosis in AD are yet to be explored. This report introduces naturally occurring polyphenols (PPs) as dual-acting therapeutic agents to synergistically alleviate ferroptosis and AD. The mechanisms of action encompass modulation of amyloid and tau cascade, reduction of oxidative stress, mitochondrial rescue, and inhibition of ferroptosis. For the first time, we show that a single multifunctional molecule, tannic acid (TA) binds at the activator site of GPX4, augmenting both its activity and cellular levels, providing a conceptually innovative and integrated approach for treating AD via the GPX4-ferroptosis axis. The ability of TA to enhance GPX4 levels under conditions of AD pathology opens up newer promising therapeutic avenues for combating the crosstalk between ferroptosis and AD.

14.
Chem Commun (Camb) ; 59(38): 5717-5720, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37092254

ABSTRACT

Pathogenic genomes harboring noncanonical G-quadruplex (GQ) forming sequences are potential targets for diagnosis. The GQ-forming cDNA sequences of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) are identified and validated as reliable diagnostic targets. The high fidelity fluorescence detection of specific cDNA GQs derived from the SARS-CoV-2 RNA genome is demonstrated using small molecular probes.


Subject(s)
COVID-19 , G-Quadruplexes , Humans , DNA, Complementary/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , Genomics
15.
J Pept Sci ; 29(5): e3465, 2023 May.
Article in English | MEDLINE | ID: mdl-36471564

ABSTRACT

Liquid-liquid phase separation (LLPS) is a complex physicochemical phenomenon mediated by multivalent transient weak interactions among macromolecules like polymers, proteins, and nucleic acids. It has implications in cellular physiology and disease conditions like cancer and neurodegenerative disorders. Many proteins associated with neurodegenerative disorders like RNA binding protein FUS (FUsed in Sarcoma), alpha-synuclein (α-Syn), TAR DNA binding protein 43 (TDP-43), and tau are shown to undergo LLPS. Recently, the tau protein responsible for Alzheimer's disease (AD) and other tauopathies is shown to phase separate into condensates in vitro and in vivo. The diverse noncovalent interactions among the biomolecules dictate the complex LLPS phenomenon. There are limited chemical tools to modulate protein LLPS which has therapeutic potential for neurodegenerative disorders. We have rationally designed cyclic dipeptide (CDP)-based small-molecule modulators (SMMs) by integrating multiple chemical groups that offer diverse chemical interactions to modulate tau LLPS. Among them, compound 1c effectively inhibits and dissolves Zn-mediated tau LLPS condensates. The SMM also inhibits tau condensate-to-fibril transition (tau aggregation through LLPS). This approach of designing SMMs of LLPS establishes a novel platform that has potential implication for the development of therapeutics for neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Neoplasms , Neurodegenerative Diseases , Humans , tau Proteins/chemistry , Zinc , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism
16.
ACS Appl Mater Interfaces ; 14(51): 56535-56547, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36516435

ABSTRACT

Alzheimer's disease (AD) is a major neurodegenerative disorder primarily characterized by the ß-amyloid (Aß42) misfolding and aggregation-associated multifaceted amyloid toxicity encompassing oxidative stress, neuronal death, and severe cognitive impairment. Modulation of Aß42 aggregation via various structurally anisotropic macromolecular systems is considered effective in protecting neuronal cells. In this regard, we have developed a cyclic dipeptide (CDP)-based copolymer (CP) and explored its material and biomedical properties. Owing to the structural versatility, CDP-CP forms solvent-dependent anisotropic architectures ranging from dense fibers and mesosheets to vesicles, which are shown to interact with dyes and nanoparticles and mimic synthetic protocells, providing a conceptually new approach to achieve advanced functional materials with the hierarchical organization. CP upon interaction with gold nanoparticles (GNP) and polyoxometalate (POM) generated faceted architectures (CP-GNP) and the nanocomposite (CP-POM), respectively. CP-GNP and CP-POM have shown remarkable ability to inhibit Aß42 aggregation, dissolve the preformed aggregates, and scavenge reactive oxygen species (ROS) to ameliorate multifaceted amyloid toxicity. In cellulo studies show that CP-GNP and CP-POM protect neuronal cells from Aß42-induced toxicity and reduce lipopolysaccharide (LPS)-activated neuroinflammation at sub-micromolar concentration. To our knowledge, this is the first report on the hierarchical organization of CDP-CP into 1D-to-2D architectures and their organic-inorganic hybrid nanocomposites to combat the multifaceted amyloid toxicity.


Subject(s)
Alzheimer Disease , Metal Nanoparticles , Humans , Gold , Metal Nanoparticles/toxicity , Amyloid beta-Peptides/chemistry , Dipeptides , Peptide Fragments/pharmacology
17.
Chem Sci ; 13(46): 13657-13689, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544728

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid ß (Aß) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aß and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aß and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.

18.
Nanoscale Adv ; 4(9): 2196-2200, 2022 May 03.
Article in English | MEDLINE | ID: mdl-36133442

ABSTRACT

Orchestration of differential architectures of designer peptidomimetics that modulate metal oxidation states to perform multiple chemical transformations remains a challenge. Cu-chelation and self-assembly properties of amyloid ß (Aß14-23) peptide were tuned by the incorporation of cyclic dipeptide (CDP) and pyrene (Py) as the assembly directing and reporting units, respectively. We explore the molecular architectonics of Aß14-23 derived peptidomimetics (AkdNMCPy) to form differential architectures that stabilize distinct Cu oxidation states. The fibrillar self-assembly of AkdNMCPy is modulated to form nanosheets by the one-off addition of CuII. Notably, the serial addition of CuII resulted in the formation of micelle-like core-shell architectures. The micelle-like and nanosheet architectures were found to differentially stabilize CuII and CuI states and catalyze tandem oxidative-hydrolysis and alkyne-azide cycloaddition reactions, respectively.

19.
Macromol Biosci ; 22(9): e2200097, 2022 09.
Article in English | MEDLINE | ID: mdl-35920099

ABSTRACT

Wound healing is a complex process requiring multiple biological pathways and chemical responses to be activated and synchronized to recover tissue integrity. In normal physiological circumstances, the epidermal barrier restoration process through new tissue formation is highly efficient. However, increased production of reactive oxygen species (ROS), attack of pathogenic microorganisms, and high glucose level delay the normal healing process in diabetic patients. The successful treatment of diabetic wounds requires efficient strategies to control oxidative stress, promoting angiogenesis, re-epithelialization, and collagen deposition. In this study, a composite hydrogel for rapid wound healing in diabetic condition is developed by the amalgamation of hypolipidemic property of silk fibroin (SF), antioxidant property of melanin, and therapeutic effect of berberine. Studies have revealed that cross-linked mesoporous morphology of hydrogel matrix facilitates slow release of berberine to impart long-term therapeutic effects at wound site. The composite hydrogel formulation is biocompatible, stimulates effective migration of fibroblast cells, and control oxidative stress under in vitro conditions. The hydrogel served as scaffold for tissue re-epithelialization and promotes wound repair in diabetic type I Wistar rat model. This study demonstrates the ability of berberine- loaded SF-melanin composite hydrogel as a potential dressing formulation for wound healing in diabetic conditions.


Subject(s)
Berberine , Diabetes Mellitus , Fibroins , Animals , Antioxidants/pharmacology , Berberine/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Melanins , Rats , Rats, Wistar , Silk/pharmacology , Wound Healing
20.
Mater Horiz ; 9(8): 2109-2114, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35792070

ABSTRACT

Boolean operations utilizing DNA as a platform for biocomputing have become a promising tool for next-generation bio-molecular computers. In the whole process of any binary data transmission, bit errors are unavoidable and commonly occur. Cascades of exclusive-OR (XOR) operations show the great potential to evaluate these errors by introducing a parity generator (pG) and a parity checker (pC). Herein, we constructed a DNA hybrid architecture platform employing a chemosensing ensemble of mercury-mediated DNA-Au/Ag nanoclusters (M-Au/Ag NCs) to operate unconventional pG/pC for "error detection". Taking advantage of pG/pC, the transmitted and received data is converted to secure information using a binary to gray code encoder. To the best of our knowledge, this is the first molecular gray code encoder for biocomputing, which discovers an exciting avenue to protect information security through sophisticated logic circuits.


Subject(s)
Mercury , Computers, Molecular , DNA , Logic
SELECTION OF CITATIONS
SEARCH DETAIL
...