Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Health Sci Pract ; 11(1)2023 02 28.
Article in English | MEDLINE | ID: mdl-36853628

ABSTRACT

During the early months of the COVID-19 pandemic in 2020, the majority of the identified COVID-19 patients in Chennai, a southern metropolitan city of India, presented as asymptomatic or with mild clinical illness. Providing facility-based care for these patients was not feasible in an overburdened health system. Thus, providing home-based clinical care for patients who were asymptomatic or with mild clinical illnesses was a viable solution. Because of the imminent possibility of worsening clinical conditions in home-isolated COVID-19 patients, continuous monitoring for red flag signs was essential. With growing evidence of the effectiveness of remote monitoring of patients, the Greater Chennai Corporation in partnership with the National Institute of Epidemiology conceptualized and implemented a remote monitoring program for home-isolated COVID-19 patients. The key steps used to develop the program were to (1) decentralize triage systems and establish a home-isolation protocol, (2) develop a remote monitoring platform and remote health care workforce, and (3) onboard patients and conduct remote hybrid monitoring. In this article, we share the pragmatic solutions, critical components of the systems and processes, lessons, and experiences in implementing a remote monitoring program for home-isolated COVID-19 patients in a large metropolitan setting.


Subject(s)
COVID-19 , Home Care Services , Humans , India/epidemiology , COVID-19/epidemiology , Pandemics , Health Personnel
2.
BMJ Open ; 12(3): e052067, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288381

ABSTRACT

OBJECTIVES: To describe the public health strategies and their effect in controlling the COVID-19 pandemic from March to October 2020 in Chennai, India. SETTING: Chennai, a densely populated metropolitan city in Southern India, was one of the five cities which contributed to more than half of the COVID-19 cases in India from March to May 2020. A comprehensive community-centric public health strategy was implemented for controlling COVID-19, including surveillance, testing, contact tracing, isolation and quarantine. In addition, there were different levels of restrictions between March and October 2020. PARTICIPANTS: We collected the deidentified line list of all the 192 450 COVID-19 cases reported from 17 March to 31 October 2020 in Chennai and their contacts for the analysis. We defined a COVID-19 case based on the real-time reverse transcriptase-PCR (RT-PCR) positive test conducted in one of the government-approved labs. OUTCOME MEASURES: The primary outcomes of interest were incidence of COVID-19 per million population, case fatality ratio (CFR), deaths per million, and the effective reproduction number (Rt). We also analysed the surveillance, testing, contact tracing and isolation indicators. RESULTS: Of the 192 450 RT-PCR confirmed COVID-19 cases reported in Chennai from 17 March to 31 October 2020, 114 889 (60%) were males. The highest incidence was 41 064 per million population among those 61-80 years. The incidence peaked during June 2020 at 5239 per million and declined to 3627 per million in October 2020. The city reported 3543 deaths, with a case fatality ratio of 1.8%. In March, Rt was 4.2, dropped below one in July and remained so until October, even with the relaxation of restrictions. CONCLUSION: The combination of public health strategies might have contributed to controlling the COVID-19 epidemic in a large, densely populated city in India. We recommend continuing the test-trace-isolate strategy and appropriate restrictions to prevent resurgence.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , India/epidemiology , Male , Pandemics/prevention & control , Public Health , Quarantine
SELECTION OF CITATIONS
SEARCH DETAIL
...