Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Hazard Mater ; 424(Pt D): 127710, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34815126

ABSTRACT

Fimbristylis dichotoma, Ipomoea aquatica, Pluchea tomentosa and their co-plantation (consortium FIP) autonomously degrade Orange 3R. Consortium FIP showed 84% removal of Orange 3R within 48 h, which is a higher dye elimination rate than individual plant systems. Oxidoreductase enzymes like tyrosinase (76%), varatryal alcohol oxidase (85%), lignin peroxidase (150%), riboflavin reductase (151%), laccase (171%), NADH-DCIP reductase (11%) and azo reductase (241%) were expressed in consortia FIP during Orange 3R degradation. UV-vis spectroscopy, enzyme activities, HPTLC, FTIR and GC-MS confirmed mineralization of Orange 3R into its metabolites. Microscopic investigation of root tissue revealed the harsh effect of dye on root tissues. Toxicity assessment on the HepG2 cell line demonstrated the toxic nature of Orange 3R, which gets reduced after phyto-treatment with consortia FIP. Floating wetpark of consortia FIP was found more efficient for the treatment of industrial textile waste and accomplished 87%, 86%, 75%, 49% and 46% removal of COD, BOD, color, TSS and TDS of effluent.


Subject(s)
Water Purification , Wetlands , Azo Compounds , Biodegradation, Environmental , Coloring Agents , Industrial Waste , Textile Industry , Textiles , Wastewater
2.
J Hazard Mater ; 418: 126349, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34118536

ABSTRACT

The potential of Iris pseudacorus and the associated periphytic biofilm for biodegradation of two common pharmaceutical contaminants (PCs) in urban wastewater was assessed individually and in consortium. An enhanced removal for sulfamethoxazole (SMX) was achieved in consortium (59%) compared to individual sets of I. pseudacorus (50%) and periphytic biofilm (7%) at concentration of 5 mg L-1. Conversely, individual sets of periphytic biofilm (77%) outperformed removal of doxylamine succinate (DOX) compared to individual sets of I. pseudacorus (59%) and consortium (67%) at concentration of 1 mg L-1. Enhanced relative abundance of microflora containing microalgae (Sellaphora, Achnanthidium), rhizobacteria (Acidibacter, Azoarcus, Thioalkalivibrio), and fungi (Serendipita) in periphytic biofilm was observed after treatment. SMX treatment for five days elevated cytochrome P450 enzymes' expressions, including aniline hydroxylase (48%) and aminopyrine N-demethylase (54%) in the periphytic biofilm. Nevertheless, I. pseudacorus showed 175% elevation of aniline hydroxylase along with other biotransformation enzymes, such as peroxidase (629%), glutathione S-transferase (514%), and dichloroindophenol reductase (840%). A floating bed phytoreactor planted with I. pseudacorus and the periphytic biofilm consortium removed 67% SMX and 72% DOX in secondary wastewater effluent. Thus, the implementation of this strategy in constructed wetland-based treatment could be beneficial for managing effluents containing PCs.


Subject(s)
Iris Plant , Pharmaceutical Preparations , Biofilms , Nitrogen/analysis , Wastewater
4.
Sci Total Environ ; 764: 144219, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33421748

ABSTRACT

Acidification during anaerobic digestion (AD) due to organic overloading is one of the major reasons for process failures and decreased methane productivity in anaerobic digesters. Process failures can cause the anaerobic digesters to stall completely, prolong the digester recovery period, and inflict an increased operational cost on wastewater treatment plants and adverse impacts on the environment. This study investigated the efficacy of bioaugmentation by using acclimatized microbial consortium (AC) in recovering anaerobic digesters stalled due to acidosis. Overloading of digesters with food waste leachate (FWL) led to the accumulation of volatile fatty acids (11.30 g L-1) and a drop in pH (4.67), which resulted in process failure and a 22-fold decline in cumulative methane production compared to that in the initial phase. In the failure phase, the syntrophic and methanogenic activities of the anaerobic digester microbiota were disrupted by a significant decrease in the abundance of syntrophic populations such as Syntrophomonas, Syntrophorhabdus, Sedimentibacter, and Levilinea, and the phylum Euryarchaeota. Bioaugmentation of the failed digesters by adding AC along with the adjustment of pH resulted in the prompt recovery of methane productivity with a 15.7-fold higher yield than that in unaugmented control. The abundance of syntrophic bacteria Syntrophomonas and phylum Euryarchaeota significantly increased by 29- and 17-fold in the recovered digesters, respectively, which showed significant positive correlations with methane productivity. Methanosarcina and acetoclastic Methanosaeta played a major role in the recovery of the digesters; they were later replaced by hydrogenotrophic Methanoculleus. The increase in the abundance of genes associated with biomethanation contributed to digester recovery, according to the functional annotation of 16S rDNA amplicon data. Thus, bioaugmentation with AC could be a viable solution to recover digesters experiencing process failure due to organic overloading.


Subject(s)
Methane , Refuse Disposal , Anaerobiosis , Bioreactors , Food , Microbial Consortia
5.
Ecotoxicol Environ Saf ; 208: 111742, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396068

ABSTRACT

The indiscriminate disposal of olsalazine in the environment poses a threat to human health and natural ecosystems because of its cytotoxic and genotoxic nature. In the present study, degradation efficiency of olsalazine by the marine-derived fungus, Aspergillus aculeatus (MT492456) was investigated. Optimization of physicochemical parameters (pH. Temperature, Dry weight) and redox mediators {(2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), p-Coumaric acid and 1-hydroxybenzotriazole (HOBT)} was achieved with Response Surface Methodology (RSM)-Box-Behnken Design (BBD) resulting in 89.43% removal of olsalazine on 7th day. The second-order polynomial regression model was found to be statistically significant, adequate and fit with p < 0.0001, F value=41.87 and correlation coefficient (R2=0.9826). Biotransformation was enhanced in the redox mediator-laccase systems resulting in 99.5% degradation of olsalazine. The efficiency of ABTS in the removal of olsalazine was more pronounced than HOBT and p-Coumaric acid in the laccase-mediator system. This is attributed to the potent nature of the electron transfer mechanism deployed during oxidation of olsalazine. The pseudo-second-order kinetics revealed that the average half-life (t1/2) and removal rates (k1) increases with increasing concentrations of olsalazine. Michaelis-Menten kinetics affirmed the interaction between laccase and olsalazine under optimized conditions with maximum removal rate, Vmax=111.11 hr-1 and half-saturation constant, Km=1537 mg L-1. At the highest drug concentration (2 mM); 98%, 95% and 93% laccase was remarkably stabilized in the enzyme-drug degradation system by HOBT, ABTS and p-Coumaric acid respectively. This study further revealed that the deactivation of laccase by the redox mediators is adequately compensated with enhanced removal of olsalazine.


Subject(s)
Aminosalicylic Acids/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Aspergillus/physiology , Biodegradation, Environmental , Ecosystem , Fungi/metabolism , Humans , Kinetics , Laccase/metabolism , Oxidation-Reduction , Sulfonic Acids/metabolism , Triazoles
6.
Ecotoxicol Environ Saf ; 208: 111619, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396139

ABSTRACT

Fluorene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), is of immense environmental interest because of its carcinogenicity, teratogenicity, mutagenicity, toxicity and persistence to microbial degradation. Existentially, there is paucity of information on PAH degradation by fungi isolated from marine environment. Therefore, this study investigated fluorene degradation efficiency of marine derived filamentous fungus, Mucor irregularis strain bpo1 (GenBank Accession Number: MK373020). Response Surface Methodology (RSM) using Box-Behnken Design (BBD) was successfully deployed in the optimization of process parameters (pH-7, temperature-32.5 °C, substrate concentration-100 mg L-1 and dry weight-2 g) resulting in 81.50% fluorene degradation on 5th day. The design and regression model were found to be statistically significant, adequate and appropriate with p < 0.0001, F value= 202.39, and predicted coefficient of determination (R2 =0.9991). Optimization of the vital constituents of the mineral salt medium (MSM) used for the study using RSM-Central Composite Design (CCD) resulted in 79.80% fluorene degradation rate. Enhanced fluorene degradation efficiency (82.50%) was recorded when the optimized process variables were subjected to growth-linked validation experiments. The enzyme activities revealed 87%, 59% and 31% induction of laccase, manganese peroxidase and lignin peroxidase respectively. Four metabolites; 9H-fluoren-9-one, benzene-1,2-dicarboxylic acid, 2-hydroxybenzoic acid and phenol obtained after the experiment were characterized and confirmed with GC-MS analysis. The findings revealed the promising potentials of M. irregularis in PAH degradation and by extension green remediation technology.


Subject(s)
Fluorenes/metabolism , Models, Theoretical , Mucor/metabolism , Biodegradation, Environmental , Biomass , Fluorenes/analysis , Laccase/metabolism , Mucor/growth & development , Mucor/isolation & purification , Peroxidases/metabolism , Seawater/microbiology
7.
J Hazard Mater ; 401: 123404, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32659588

ABSTRACT

Pharmaceutical contaminants in environment induce unexpected effects on ecological systems and human; thus, development of efficient technologies for their removal is immensely necessary. In this study, biodegradation and metabolic fate of a frequently found pharmaceutical contaminant, doxylamine by Typha angustifolia and Ipomoea aquatica was investigated. Microbial community of the plant rhizosphere has been identified to understand the important roles of the functional microbes. The plants reduced 48-80.5 % of doxylamine through hydrolysis/dehydroxylation and carbonylation/decarbonylation. A constructed phytobed co-planted with T. angustifolia and I. aquatica removed 77.3 %, 100 %, 83.67 %, and 61.13 % of chemical oxygen demand, total nitrogen, total phosphorus, and doxylamine respectively from real wastewater. High-throughput sequencing of soil and rhizosphere indicated that the phyla Proteobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Actinobacteria, and Cyanobacteria dominated the microbial communities of the phytobed. Current study has demonstrated the applicability of the developed phytobeds for the treatment of doxylamine from municipal wastewater and provide a comprehensive understanding of its metabolism through plant and its rhizospheric microbial communities.


Subject(s)
Ipomoea , Microbiota , Typhaceae , Biodegradation, Environmental , Doxylamine , Humans , Rhizosphere , Soil Microbiology , Wastewater
8.
Sci Rep ; 10(1): 20234, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214589

ABSTRACT

The current study investigated the efficiency of synergistic biological and Advanced Oxidation Process (AOPs) treatment (B-AOPs) using Aeromonas hydrophila SK16 and AOPs-H2O2 in the removal of Remazol Yellow RR dye. Singly, A. hydrophila and AOPs showed 90 and 63.07% decolourization of Remazol Yellow RR dye (100 mg L-1) at pH 6 and ambient temperature within 9 h respectively. However, the synergistic B-AOPs treatments showed maximum decolorization of Remazol Yellow RR dye within 4 h. Furthermore, the synergistic treatment significantly reduced BOD and COD of the textile wastewater by 84.88 and 82.76% respectively. Increased levels in laccase, tyrosinase, veratryl alcohol oxidase, lignin peroxidase and azo reductase activities further affirmed the role played by enzymes during degradation of the dye. UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) confirmed the biotransformation of dye. A metabolic pathway was proposed based on enzyme activities and metabolites obtained after GC-MS analysis. Therefore, this study affirmed the efficiency of combined biological and AOPs in the treatment of dyes and textile wastewaters in comparison with other methods.


Subject(s)
Aeromonas hydrophila/growth & development , Azo Compounds/chemistry , Hydrogen Peroxide/metabolism , Wastewater/chemistry , Aeromonas hydrophila/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Laccase/metabolism , Peroxidases/metabolism , Spectroscopy, Fourier Transform Infrared , Temperature , Textile Industry
9.
Ecotoxicol Environ Saf ; 203: 110997, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32684518

ABSTRACT

A novel study on biodegradation of 30 mg L-1 of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) mixture (celecoxib, diclofenac and ibuprofen) by two wood-rot fungi; Ganoderma applanatum (GA) and Laetiporus sulphureus (LS) was investigated for 72 h. The removal efficiency of celecoxib, diclofenac and ibuprofen were 98, 96 and 95% by the fungal consortium (GA + LS). Although, both GA and LS exhibited low removal efficiency (61 and 73% respectively) on NSAIDs. However, 99.5% degradation of the drug mixture (NSAIDs) was achieved on the addition of the fungal consortium (GA + LS) to the experimental set-up. Overall, LS exhibited higher degradation efficiency; 92, 87, 79% on celecoxib, diclofenac and ibuprofen than GA with 89, 80 and 66% respectively. Enzyme analyses revealed significant induction of 201, 180 and 135% in laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by the fungal consortium during degradation of the NSAIDs respectively. The experimental data showed the best goodness of fit when subjected to Langmuir (R2 = 0.980) and Temkin (R2 = 0.979) isotherm models which suggests monolayer and heterogeneous nature exhibited by the mycelia during interactions with NSAIDs. The degradation mechanism followed pseudo-second-order kinetic model (R2 = 0.987) indicating the strong influence of fungal biomass in the degradation of NSAIDs. Furthermore, Gas Chromatography-Mass Spectrometry (GCMS) and High-Performance Liquid Chromatography (HPLC) analyses confirmed the degraded metabolic states of the NSAIDs after treatment with GA, LS and consortium (GA + LS). Hence, the complete removal of NSAIDs is best achieved in an economical and eco-friendly way with the use of fungi consortium.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Environmental Pollutants/analysis , Ganoderma/enzymology , Ganoderma/growth & development , Lignin/metabolism , Wood/microbiology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Biodegradation, Environmental , Biomass , Environmental Pollutants/metabolism , Enzyme Induction/drug effects , Kinetics , Laccase/biosynthesis , Models, Biological , Peroxidases/biosynthesis
10.
Appl Biochem Biotechnol ; 191(4): 1695-1710, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32206967

ABSTRACT

We evaluated various agricultural lignocellulosic biomass and variety of fungi to produce cellulolytic enzymes cocktail to yield high amount of reducing sugars. Solid-state fermentation was performed using water hyacinth, paddy straw, corn straw, soybean husk/tops, wheat straw, and sugarcane bagasse using fungi like Nocardiopsis sp. KNU, Trichoderma reesei, Trichoderma viride, Aspergillus flavus, and Phanerochaete chrysosporium alone and in combination to produce cellulolytic enzymes. Water hyacinth produced (U ml-1) endoglucanase (51.13) and filter paperase (0.55), and corn straw produced (U ml-1) ß-glucosidase (4.65), xylanase (113.32), and glucoamylase (41.27) after 7-day incubation using Nocardiopsis sp. KNU. Production of cellulolytic enzymes was altered due to addition of various nitrogen sources, metal ions, vitamins, and amino acids. The maximum cellulolytic enzymes were produced by P. chrysosporium (endoglucanase; 166.32 U ml-1 and exoglucanase; 12.20 U ml-1), and by T. viride (filter paperase; 1.57 U ml-1). Among all, co-culture of T. reesei, T. viride, A. flavus, and P. chrysosporium showed highest ß-glucosidase (17.05 U ml-1). The highest xylanase (1129 U ml-1) was observed in T. viride + P. chrysosporium co-culture. This study revealed the dependency on substrate and microorganism to produce good quality enzyme cocktail to obtain maximum reducing sugars.


Subject(s)
Aspergillus niger/enzymology , Cellulase/biosynthesis , Fungal Proteins/biosynthesis , Industrial Microbiology/methods , Lignin/chemistry , Biomass , Cellulose , Fermentation , Hydrolysis , Hypocreales/enzymology , Phanerochaete/enzymology , Saccharum , Triticum , beta-Glucosidase/biosynthesis
11.
Chemosphere ; 252: 126513, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32203784

ABSTRACT

Plants are known to remediate dyes, metals and emerging contaminants from wastewaters. Vetiveria zizanioides, a perennial bunchgrass showed removal of Remazol Red (RR, 100 mg/L) up to 93% within 40 h. Root and shoot tissues of V. zizanioides revealed induction in dye degrading enzymes viz. lignin peroxidase by 2.28 and 1.43, veratryl alcohol oxidase 2.72 and 1.60, laccase 6.15 and 3.55, and azo reductase 2.17 and 2.65-fold, respectively, during RR decolorization. Substantial increase was observed in the contents of chlorophyll a, chlorophyll b, and carotenoids in the plant leaves during treatment. Anatomical studies of roots, HPLC and GC-MS analysis of metabolites, and phytotoxicity assessment confirmed phytotransformation of RR into nontoxic metabolites. Floating phytobed with V. zizanioides treated textile wastewater (400 L) effectively and reduced ADMI, COD, BOD, TDS, and TSS by 74, 74, 81, 66 and 47%, respectively within 72 h. In-situ treatment of textile wastewater for 5 days in constructed furrows planted with semiaquatic plants, V. zizanioides, Ipomoea aquatica and its consortium-VI decreased ADMI by 68, 61 and 76%, COD by 75, 74 and 79%, BOD by 73, 71 and 84%, TDS by 77, 75 and 83%, and TSS by 34, 31 and 51%, respectively. This treatment was also useful to remove arsenic, cadmium, chromium and lead from wastewater. Overall observation suggests wise strategy to use this plantation in the furrows of high rate transpiration system and phytobeds in deep water for textile wastewater treatment.


Subject(s)
Waste Disposal, Fluid/methods , Biodegradation, Environmental , Chlorophyll A , Coloring Agents/metabolism , Gas Chromatography-Mass Spectrometry , Laccase , Peroxidases , Textile Industry , Textiles , Wastewater
12.
J Hazard Mater ; 389: 122149, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32004845

ABSTRACT

Environmental contamination by benzophenone-3 has gained attention because of its frequent occurrence and adverse environmental impact. Studies investigating the toxicity and removal mechanisms, along with its degradation pathway in microalgae are still rare. In this study, the ecotoxicity of benzophenone-3 on Scenedesmus obliquus was assessed through dose-response test, risk quotient evaluation, and changes of microalgal biochemical characteristics and gene expression. The calculated risk quotients of benzophenone-3 were >1, implying its high environmental risk. Expression of the ATPF0C and Tas genes encoding ATP-synthase and oxidoreductase was significantly increased in S. obliquus after exposure to benzophenone-3, while that of Lhcb1 and HydA genes was reduced. When exposed to 0.1-3 mg L-1 benzophenone-3, 23-29 % removal was achieved by S. obliquus, which was induced by abiotic removal, bioadsorption, bioaccumulation and biodegradation. Metabolic fate analyses showed that biodegradation of benzophenone-3 was induced by hydroxylation, and methylation, forming less toxic intermediates according to the toxicity assessment of the identified products. This study provides a better understanding of the toxicity and metabolic mechanisms of benzophenone-3 in microalgae, demonstrating the potential application of microalgae in the remediation of benzophenone-3 contaminated wastewater.


Subject(s)
Benzophenones/metabolism , Benzophenones/toxicity , Scenedesmus/drug effects , Scenedesmus/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Benzophenones/chemistry , Gene Expression/drug effects , Hydroxylation , Kinetics , Methylation , Microalgae/drug effects , Microalgae/metabolism , Photosynthesis/drug effects , Risk Assessment , Water Pollutants, Chemical/chemistry
13.
Environ Sci Pollut Res Int ; 26(33): 34552-34561, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31650474

ABSTRACT

Pharmaceutical contamination in diverse water resources has been recognized as an emerging concern in environment because of its wide distribution and adverse effects on aquatic microorganisms and human health. Plant remediation with augmentation of microorganisms is a cost-effective and environmentally friendly approach toward an efficient treatment of pollutants, which can be easily applied in situ. (Bio)degradation of sulfamethazine (SMZ) by Iris pseudacorus, microalgal consortium, and plant-microalgal consortium was investigated. I. pseudacorus and microalgae could remove 63.5, and 25.8% of 1 mg SMZ L-1, respectively, whereas, the plant-microalgal consortium achieved 74% removal. The identified intermediates extracted after plant remediation indicated (bio)degradation of SMZ was through ring cleavage, hydroxylation, and dehydroxylation. Pigment content (total chlorophyll and carotenoid) of I. pseudacorus was significantly influenced by SMZ stress. A phytoreactor (20 L) constructed with I. pseudacorus achieved 30.0% and 71.3% removal of 1 mg SMZ L-1 from tap water and nutrient medium. This study has provided a better understanding of the metabolic mechanisms of SMZ in plants and showed the potential development of a plant-microalgal consortium as an advanced technology for treatment of these emerging contaminants. Graphical abstract.


Subject(s)
Biodegradation, Environmental , Microalgae/metabolism , Sulfamethazine/metabolism , Water Pollutants, Chemical/metabolism , Chlorophyll/metabolism , Humans , Iris Plant/growth & development
14.
Bioresour Technol ; 289: 121638, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31212174

ABSTRACT

Compositional variations in organic wastes influence microbial abundancy and syntrophy during anaerobic digestion (AD), impacting the normal performance of digesters for methanation. Investigation of the microbial dynamics during AD following augmentation with polysaccharidic wastes (PW) revealed the association of effective digester performance and methane yields with the microbial nexus. Dominance of the acidogenic saccharolytic genera, Prevotella, Eubacterium, and Lachnoclostridium, enhanced the utilization of carbohydrates (54%) in PW-augmented digesters. Spearman's rs correlation showed dynamic interspecies interactions among acetogenic syntrophs, and that of iron oxidizers/reducers with acetoclastic and hydrogenotrophic methanogens. Propionate oxidizers in Chloroflexi (i.e., Bellilinea, Levilinea, and Longilinea) exhibited positive associations with acetoclastic methanogens. Increase in the population of acetoclastic methanogens (Methanosaeta, 77% and Methanosarcina, 9%) accelerated the methanogenic activity of PW-augmented digesters by 7 times during the exponential phase, increasing the methane yield (75%) compared to the control. Thus, microbial syntrophy facilitated the effective methanation of PW during AD process.


Subject(s)
Methane , Methanosarcina , Anaerobiosis , Bioreactors , Propionates
15.
Trends Plant Sci ; 24(7): 611-624, 2019 07.
Article in English | MEDLINE | ID: mdl-31085124

ABSTRACT

Microalgae hold the promise of an inexpensive and sustainable source of biofuels. The existing microalgal cultivation technologies need significant improvement to outcompete other biofuel sources such as terrestrial plants. Application of 'algomics' approaches under different abiotic stress conditions could be an effective strategy for optimization of microalgal growth and production of high-quality biofuels. In this review, we discuss the roles of omics in understanding genome structure and biocomponents metabolism in various microalgal species to optimize sustainable biofuel production. Application of individual and integrated omics revealed that genes and metabolic pathways of microalgae have been altered under multiple stress conditions, resulting in an increase in biocomponents, providing a research platform for expansion of genetic engineering studies in microalgal strains.


Subject(s)
Microalgae , Biofuels , Biotechnology , Stress, Physiological
16.
J Hazard Mater ; 374: 66-73, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30978632

ABSTRACT

Intensive use of atrazine in agriculture to increase crop productivity has resulted in pollution and consequently deteriorated the environment. Three isolated bacteria, Rhodococcus sp. BCH2 (RB), Bacillus sp. PDK1 (BP1) and Bacillus sp. PDK2 (BP2) possessing capability to degrade atrazine were used in different combinations (RB + BP1, RB + BP2, BP1 + BP2, RB + BP1 + BP2) to prepare a highly effective bacterial consortium which can significantly reduce the toxicity of atrazine. Cytotoxicity tests evaluated by MTT assay on HepG2 indicated significant decrease in the toxicity of atrazine by the consortium RB + BP1 + BP2 due to its effective degradation and formation of simpler and less/nontoxic metabolites compared to other combinations of consortia. A microcosm study was conducted to check the survivability of this consortium (RB + BP1 + BP2) in the presence of atrazine and indigenous soil microflora for four weeks. LC-Q-TOF/MS analysis revealed that RB + BP1 + BP2 could degrade atrazine to various simple metabolites in the microcosm. The cluster analysis of the DGGE patterns of the microcosm of control-soil, soil exposed to atrazine and soil augmented with consortium in the presence of atrazine (1000 mg kg-1) revealed a shift in microbial community of soil. The microbial dynamics studies suggested that the augmented bacteria were well-thrived with natural microflora during four weeks of exposure to atrazine.


Subject(s)
Atrazine/metabolism , Atrazine/toxicity , Biodegradation, Environmental , Agriculture , Bacillus/metabolism , Cluster Analysis , Hep G2 Cells , Herbicides/metabolism , Herbicides/toxicity , Humans , Microbiota , Phylogeny , Rhodococcus/metabolism , Soil , Soil Microbiology , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
17.
Biotechnol Rep (Amst) ; 23: e00327, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30997348

ABSTRACT

Filamentous fungi perform tremendously in adsorption of dyes from polluted environment. In this study, Aspergillus niger LAG decolorized thiazole yellow G dye within 5 days. Scale up studies done revealed that maximum decolorization (98%) was achieved at a concentration (10 mg L-1), temperature (35 °C) and pH 6. The fungus exhibited significant inductions in laccase (71%) and lignin peroxidase (48%) respectively. Spectrometric analysis (UV-vis, HPLC and gas chromatography-mass spectrometry) was used in analyzing the degraded products of the dye. The GCMS analysis revealed the production of two metabolites; sodium 6-methyl-2-phenyl-1,3-benzothiazole-7-sulfonate and 2-phenyl-4,5-dihydro-1,3-thiazole after degradation of thiazole yellow G dye. A metabolic pathway of thiazole yellow G dye degradation by Aspergillus niger was proposed. Significant growth in plumule and radicle couple with an attendant increase in germination further confirmed the detoxified status of the dye after degradation.

18.
Trends Biotechnol ; 37(8): 855-869, 2019 08.
Article in English | MEDLINE | ID: mdl-30871798

ABSTRACT

'Higher' alcohols, which contain more than two carbons, have a higher boiling point, higher cetane number, and higher energy density than ethanol. Blends of biodiesel and higher alcohols can be used in internal combustion engines as next-generation biofuels without any modification and are minimally corrosive over extensive use. Producing higher alcohols from biomass involves fermenting and metabolizing amino acids. In this review, we describe the pathways and regulatory mechanisms involved in amino acid bioprocessing to produce higher alcohols and the effects of amino acid supplementation as a nitrogen source for higher alcohol production. We also discuss the most recent approaches to improve higher alcohol production via genetic engineering technologies for three microorganisms: Saccharomyces cerevisiae, Clostridium spp., and Escherichia coli.


Subject(s)
Alcohols/metabolism , Amino Acids/metabolism , Clostridium/metabolism , Escherichia coli/metabolism , Metabolic Networks and Pathways , Saccharomyces cerevisiae/metabolism , Biotechnology/methods , Biotransformation , Clostridium/genetics , Escherichia coli/genetics , Saccharomyces cerevisiae/genetics
19.
J Hazard Mater ; 371: 115-122, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30849565

ABSTRACT

A combination of photocatalysis and biodegradation is a promising approach for the removal of xenobiotic organic compounds from wastewater, since photocatalysis cleaves the molecules into simpler intermediates that are later mineralized by microorganisms. Sequential photocatalytic and biological treatment (SPABT) consisting of ZnO as a photocatalyst and a microbial consortium (Galactomyces geotrichum and Brevibaccilus laterosporus) enhanced the degradation of a model textile dye, methyl red (MR). SPABT completely decolorized 500 mg MR/L within 4 h. Biotreatment alone required 6 h for 100% decolorization. A maximum of 70% decolorization was achieved with the photocatalytic treatment but reductions in COD and toxicity were not adequate. Significant elevated activities of enzymes, including azo reductase, laccase and veratryl alcohol oxidase, were observed in the microbial consortium after exposure of MR. The degradation pathway and products of MR varied with treatment applied. The persistent azo bond was cleaved by following photocatalytic treatment with the microbial biotreatment. Tests with Sorghum vulgare and Phaseolus mungo indicated the products obtained by SPABT were non-phytotoxic.


Subject(s)
Azo Compounds/metabolism , Biodegradation, Environmental , Photochemical Processes , Catalysis , Cell-Free System , Enzymes/metabolism , Microbial Consortia , Textile Industry , Wastewater/chemistry
20.
Chemosphere ; 225: 696-704, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30904757

ABSTRACT

Plants serve as appropriate markers of worldwide pollution because they are present in almost every corner of the globe and bioaccumulate xenobiotic chemicals from their environment. The potential of a semi-aquatic plant, Ipomoea aquatica, to uptake and metabolize sulfamethoxazole (SMX) was investigated in this study. I. aquatica exhibited 100% removal of 0.05 mg L-1 SMX from synthetic media within 30 h. The I. aquatica achieved 93, 77 and 72% removal of SMX at 0.2, 0.5 and 1 mg L-1, respectively, after 48 h. This indicated that removal efficiency of I. aquatica was deteriorating at high concentrations of SMX. The chlorophyll and carotenoid content of I. aquatica was insignificantly influenced by SMX irrespective of its high concentration. Similarly, scanning electron microscopy (SEM) showed that exposure to SMX had an insignificant impact on morphology of the plant organelles. The mechanisms of removal by I. aquatica were explored by evaluating contributions of bioadsorption, bioaccumulation and biodegradation. There was negligible adsorption of SMX to plant roots. Accumulation of SMX within plant roots and stems was not observed; however, I. aquatica accumulated 17% of SMX in leaves. Thus, the major mechanism of elimination of SMX was biodegradation, which accounted for 82% removal of SMX. Gas chromatography-mass spectrometry (GC-MS) confirmed that I. aquatica biodegraded SMX into simpler compounds, and generated 4-aminophenol as its final product. A laboratory scale phytoreactor was used to investigate the application of I. aquatica in a simulated system, where it achieved 49% removal of SMX (0.2 mg L-1) in 10 d.


Subject(s)
Biodegradation, Environmental/drug effects , Ipomoea/metabolism , Sulfamethoxazole/metabolism , Water Pollutants, Chemical/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...