Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(39): eadi8259, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37756396

ABSTRACT

Regional relative sea level rise is exacerbating flooding hazards in the coastal zone. In addition to changes in the ocean, vertical land motion (VLM) is a driver of spatial variation in sea level change that can either diminish or enhance flood risk. Here, we apply state-of-the-art interferometric synthetic aperture radar and global navigation satellite system time series analysis to estimate velocities and corresponding uncertainties at 30-m resolution in the New York City metropolitan area, revealing VLM with unprecedented detail. We find broad subsidence of 1.6 mm/year, consistent with glacial isostatic adjustment to the melting of the former ice sheets, and previously undocumented hot spots of both subsidence and uplift that can be physically explained in some locations. Our results inform ongoing efforts to adapt to sea level rise and reveal points of VLM that motivate both future scientific investigations into surface geology and assessments of engineering projects.

2.
Sci Rep ; 11(1): 18873, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556790

ABSTRACT

Cartagena is subsiding at a higher rate compared to that of global climate-driven sea level rise. We investigate the relative sea level rise (RSLR) and the influence of vertical land movements in Cartagena through the integration of different datasets, including tide gauge records, GPS geodetic subsidence data, and Interferometric Synthetic Aperture Radar (InSAR) observations of vertical motions. Results reveal a long-term rate (> 60 years) of RSLR of 5.98 ± 0.01 mm/yr. The last two decades exhibited an even greater rate of RSLR of 7.02 ± 0.06 mm/yr. GPS subsidence rates range between - 5.71 ± 2.18 and - 2.85 ± 0.84 mm/yr. InSAR data for the 2014-2020 period show cumulative subsidence rates of up to 72.3 mm. We find that geologically induced vertical motions represent 41% of the observed changes in RSLR and that subsidence poses a major threat to Cartagena's preservation. The geodetic subsidence rates found would imply a further additional RSLR of 83 mm by 2050 and 225 mm by 2100. The Colombian government should plan for the future and serve as an example to similar cities across the Caribbean.

3.
Sensors (Basel) ; 19(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703449

ABSTRACT

The wider Zagreb area is considered one of the few seismically active areas in the Republic of Croatia. During the period 1880-1906, moderate to strong seismic activity with three earthquakes magnitude M L ≥ 6 occurred on the NW-SE striking Kasina Fault and since then, the area has not experienced earthquakes exceeding magnitude M L = 5 . In order to estimate the ongoing interseismic strain accumulation along the fault, we analyze Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) and Environmental Satellite (Envisat)-Advanced Synthetic Aperture Radar (ASAR) datasets acquired over the period 2007-2010 and 2002-2010, respectively. The data were analyzed using small baseline interferometry (SBI) technique and indicate very slow surface deformations in the area, within ±3.5 mm/year, which are in a good agreement with previous geodetic studies. Interseismic strain accumulation analysis was conducted on two 14 km long segments of the Kasina Fault, seismically active in the South and stable in the North. The analysis indicates an ongoing interseismic strain accumulation of 2.3 mm/year on the Southern segment and no detectable strain accumulation on the Northern segment. Taking into consideration the lack of moderate to strong seismic activity in the past 113 years combined with the preliminary geodetic analysis from this study, we can conclude that the Southern segment of the Kasina Fault has the potential to generate earthquake magnitude M w < 6.

SELECTION OF CITATIONS
SEARCH DETAIL
...