Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Transl Med ; 16(1): 82, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29606147

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, or the combination) enhance anti-tumor immune responses, yielding durable clinical benefit in several cancer types, including melanoma. However, a subset of patients experience immune-related adverse events (irAEs), which can be severe and result in treatment termination. To date, no biomarker exists that can predict development of irAEs. METHODS: We hypothesized that pre-treatment antibody profiles identify a subset of patients who possess a sub-clinical autoimmune phenotype that predisposes them to develop severe irAEs following immune system disinhibition. Using a HuProt human proteome array, we profiled baseline antibody levels in sera from melanoma patients treated with anti-CTLA-4, anti-PD-1, or the combination, and used support vector machine models to identify pre-treatment antibody signatures that predict irAE development. RESULTS: We identified distinct pre-treatment serum antibody profiles associated with severe irAEs for each therapy group. Support vector machine classifier models identified antibody signatures that could effectively discriminate between toxicity groups with > 90% accuracy, sensitivity, and specificity. Pathway analyses revealed significant enrichment of antibody targets associated with immunity/autoimmunity, including TNFα signaling, toll-like receptor signaling and microRNA biogenesis. CONCLUSIONS: Our results provide the first evidence supporting a predisposition to develop severe irAEs upon immune system disinhibition, which requires further independent validation in a clinical trial setting.


Subject(s)
Antibodies, Neoplasm/blood , Immunotherapy/adverse effects , Melanoma/immunology , Melanoma/therapy , Aged , Female , Humans , Male , Melanoma/blood , Proteomics , Reproducibility of Results
3.
Exp Brain Res ; 220(2): 121-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22623097

ABSTRACT

Stimulation of vestibular receptors elicits distinct changes in blood flow to the forelimb and hindlimb, showing that the nervous system has the capacity to produce changes in sympathetic outflow which are specific for a particular region of the body. However, it is unclear whether the rostral ventrolateral medulla (RVLM), the primary region of the brainstem that regulates sympathetic outflow to vascular smooth muscle, has the appropriate connectivity with sympathetic preganglionic neurons to generate anatomically patterned responses. To make this determination, the retrograde fluorescent tracer Fast Blue was injected into the T(4) spinal cord segment of cats, which regulates upper body blood flow, whereas Fluoro-Ruby was injected into the T(10) segment to label projections to a region of the spinal cord that regulates lower body blood flow. More neurons were single-labeled by a particular tracer (92 %) than were double labeled by both tracers (8 %), supporting the notion that the RVLM can regulate sympathetic outflow from a limited number of spinal cord segments. Since a large fraction of RVLM neurons that control sympathetic outflow in rodents contain epinephrine, we additionally determined whether the tracer-labeled cells were immunopositive for the enzyme tyrosine hydroxylase (TH), which participates in the synthesis of catecholamines. Double labeling by the two tracers injected into the spinal cord was more common for TH-immunopositive neurons than for the general population of RVLM neurons: 19 % of the TH-positive cells contained both Fast Blue and Fluoro-Ruby, 30 % contained one of the tracers, and 51 % were not labeled by either tracer. Furthermore, many spinally projecting neurons in close proximity to the RVLM catecholaminergic neurons (41 % of the population) were not immunopositive for TH, suggesting that feline RVLM is neurochemically heterogeneous.


Subject(s)
Medulla Oblongata/physiology , Neurons/physiology , Spinal Cord/physiology , Animals , Cats , Dextrans , Female , Male , Neural Pathways/physiology , Neuronal Tract-Tracers , Rhodamines , Thoracic Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL
...