Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 72(2): 226-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26299755

ABSTRACT

By 2050, Africa's population is projected to exceed 2 billion. Africa will have to increase food production more than 50% in the coming 50 years to meet the nutritional requirements of its growing population. Nowhere is the need to increase agricultural productivity more pertinent than in much of Sub-Saharan Africa, where it is currently static or declining. Optimal pest management will be essential, because intensification of any system creates heightened selection pressures for pests. Plant-parasitic nematodes and their damage potential are intertwined with intensified systems and can be an indicator of unsustainable practices. As soil pests, nematodes are commonly overlooked or misdiagnosed, particularly where appropriate expertise and knowledge transfer systems are meager or inadequately funded. Nematode damage to roots results in less efficient root systems that are less able to access nutrients and water, which can produce symptoms typical of water or nutrient deficiency, leading to misdiagnosis of the underlying cause. Damage in subsistence agriculture is exacerbated by growing crops on degraded soils and in areas of low water retention where strong root growth is vital. This review focuses on the current knowledge of economically important nematode pests affecting key crops, nematode control methods and the research and development needs for sustainable management, stakeholder involvement and capacity building in the context of crop security in East and Southern Africa, especially Kenya, Tanzania, Uganda and Zimbabwe.


Subject(s)
Crops, Agricultural/parasitology , Nematoda/physiology , Pest Control/methods , Plant Diseases/prevention & control , Africa, Eastern , Africa, Southern , Agriculture , Animals , Plant Diseases/parasitology
2.
Exp Appl Acarol ; 60(2): 139-51, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23435864

ABSTRACT

The coconut palm is an important crop in the sub arid coastal plain of Dhofar, Oman, for the high demand for its nut water and its use as ornamental plant. Damage of coconut fruits by the eriophyid mite Aceria guerreronis Keifer was first reported in that region in the late 1980s, but background information about the ecology of the pest in Oman was missing. Four surveys were conducted in different seasons from 2008 to 2009, to assess the distribution and prevalence of the coconut mite and its damage as well as the presence of natural enemies. Infestation by the coconut mite was conspicuous on most (99.7 %) palm trees, with 82.5 % damaged fruits. The average (± SE) density of coconut mites per fruit was 750 ± 56; this level of infestation led to the incidence of over 25 % of surface damage on more than half of the fruits. The mite appeared more abundant at the end of the cold season through the summer. No significant differences were observed between infestation levels on local varieties, hybrids and on dwarf varieties. Neoseiulus paspalivorus (De Leon), Cydnoseius negevi (Swirski & Amitai) and Amblyseius largoensis (Muma) were the predatory mites found under the bracts of over 30 % of the coconut fruits and on 68 % of the coconut trees. Considering all sampling dates and all varieties together, average (± SE) phytoseiid density was 1.4 ± 1.19 per fruit. Other mites found in the same habitat as A. guerreronis included the tarsonemids Steneotarsonemus furcatus De Leon and Nasutitarsonemus omani Lofego & Moraes. The pathogenic fungus Hirsutella thompsonii Fisher was rarely found infecting the coconut mite in Dhofar. Other fungal pathogens, namely Cordyceps sp. and Simplicillium sp., were more prevalent.


Subject(s)
Cocos/parasitology , Mites/physiology , Seasons , Animals , Oman , Population Dynamics
3.
J Nematol ; 42(3): 173-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-22736854

ABSTRACT

Root-knot nematode is an important pest in agricultural production worldwide. Crop rotation is the only management strategy in some production systems, especially for resource poor farmers in developing countries. A series of experiments was conducted in the laboratory with several leguminous cover crops to investigate their potential for managing a mixture of root-knot nematodes (Meloidogyne arenaria, M. incognita, M. javanica). The root-knot nematode mixture failed to multiply on Mucuna pruriens and Crotalaria spectabilis but on Dolichos lablab the population increased more than 2- fold when inoculated with 500 and 1,000 nematodes per plant. There was no root-galling on M. pruriens and C. spectabilis but the gall rating was noted on D. lablab. Greater mortality of juvenile root-knot nematodes occurred when exposed to eluants of roots and leaves of leguminous crops than those of tomato; 48.7% of juveniles died after 72 h exposure to root eluant of C. spectabilis. The leaf eluant of D. lablab was toxic to nematodes but the root eluant was not. Thus, different parts of a botanical contain different active ingredients or different concentrations of the same active ingredient. The numbers of root-knot nematode eggs that hatched in root exudates of M. pruriens and C. spectabilis were significantly lower (20% and 26%) than in distilled water, tomato and P. vulgaris root exudates (83%, 72% and 89%) respectively. Tomato lacks nematotoxic compounds found in M. pruriens and C. spectabilis. Three months after inoculating plants with 1,000 root-knot nematode juveniles the populations in pots with M. pruriens, C. spectabilis and C. retusa had been reduced by approximately 79%, 85% and 86% respectively; compared with an increase of 262% nematodes in pots with Phaseolus vulgaris. There was significant reduction of 90% nematodes in fallow pots with no growing plant. The results from this study demonstrate that some leguminous species contain compounds that either kill root-knot nematodes or interfere with hatching and affect their capacity to invade and develop within their roots. M. pruriens, C. spectabilis and C. retusa could be used with effect to decrease a mixed field populations of root-knot nematodes.

4.
Exp Parasitol ; 119(1): 180-5, 2008 May.
Article in English | MEDLINE | ID: mdl-18316080

ABSTRACT

Entomopathogenic nematodes complete their life cycles inside dead insects. The emergence of new infective juveniles from the cadaver has been attributed (but never demonstrated) to food depletion or to the accumulation of metabolites from the breakdown of the host's tissues. Here we give evidence that emergence is triggered by ammonia, a product of nematode defecation. We found that the emergence of Steinernemafeltiae infective juveniles from Galleriamellonella cadavers was stimulated by a particular level of ammonia. Emergence was delayed when ammonia in the cadaver was decreased and was prompted when increased. These findings will further improve the understanding of the nematode life cycle. Here we speculate that production of infective juveniles can be mediated by ammonia and work in a manner analogous to that of the dauer recovery inhibiting factor (DRIF) in Caenorhabditiselegans.


Subject(s)
Ammonia/pharmacology , Lepidoptera/parasitology , Rhabditida/drug effects , Ammonia/analysis , Ammonia/metabolism , Animals , Cadaver , Larva/drug effects , Larva/physiology , Lepidoptera/metabolism , Rhabditida/physiology , Symbiosis , Xenorhabdus/physiology
5.
Int J Parasitol ; 38(1): 85-91, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17662985

ABSTRACT

Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers.


Subject(s)
Insecta/parasitology , Rhabditida/physiology , Animals , Feeding Behavior/physiology , Host-Parasite Interactions , Larva/parasitology
6.
J Invertebr Pathol ; 96(1): 28-33, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17399736

ABSTRACT

A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax).


Subject(s)
Bacteria/genetics , Bacteria/ultrastructure , Spores, Bacterial/ultrastructure , Tylenchoidea/parasitology , Animals , Bacteria/pathogenicity , Base Sequence , Fraxinus/microbiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Spores, Bacterial/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...